【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn)、,求的值.
【答案】(1) 直線的普通方程為;曲線的直角坐標(biāo)方程是. (2)
【解析】
(1)利用參數(shù)方程與普通方程互化及極坐標(biāo)與普通方程互化求解即可;(2)直線參數(shù)方程與曲線C聯(lián)立,利用t的幾何意義結(jié)合韋達(dá)定理求解即可
(1)消去參數(shù)t得直線的普通方程為;
因?yàn)?/span>,所以,由
所以曲線的直角坐標(biāo)方程是.
(2)點(diǎn)是直線上的點(diǎn),設(shè),兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,
將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得 .
方程判別式,可得,.
于是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率,左、右焦點(diǎn)分別為,拋物線的焦點(diǎn)F恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)已知圓M:的切線與橢圓相交于A、B兩點(diǎn),那么以AB為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說明理由,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10月1日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場(chǎng),手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在10月1日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:
手機(jī)店 |
|
|
|
|
|
型號(hào)手機(jī)銷量 | 6 | 6 | 13 | 8 | 11 |
型號(hào)手機(jī)銷量 | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;
(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷活動(dòng),用
(III)經(jīng)測(cè)算,型號(hào)手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號(hào)手機(jī)銷量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,.
(Ⅰ)若點(diǎn)為的中點(diǎn),求證:∥平面;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合滿足.若存在非負(fù)整數(shù),使得當(dāng)時(shí),均有,則稱集合具有性質(zhì).記具有性質(zhì)的集合的個(gè)數(shù)為.
(1)求的值;
(2)求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為,( 為參數(shù)).直線與曲線分別交于、兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的直角坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若直線是曲線的一條切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若函數(shù)在上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于以,為公共焦點(diǎn)的橢圓和雙曲線,設(shè)是它們的一個(gè)公共點(diǎn),,分別為它們的離心率.若,則的最大值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com