【題目】“人機大戰(zhàn),柯潔哭了,機器贏了”,2017年5月27日,歲的世界圍棋第一人柯潔不敵人工智能系統(tǒng)AlphaGo,落淚離席.許多人認(rèn)為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進(jìn)行了調(diào)查.在參與調(diào)查的男性中,有人持反對意見,名女性中,有人持反對意見.再運用這些數(shù)據(jù)說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關(guān)系時,應(yīng)采用的統(tǒng)計方法是( )

A.分層抽樣B.回歸分析C.獨立性檢驗D.頻率分布直方圖

【答案】C

【解析】

根據(jù)“性別”以及“反對與支持”這兩種要素,符合,從而可得出統(tǒng)計方法。

本題考查“性別”對判斷“人機大戰(zhàn)是人類的勝利”這兩個變量是否有關(guān)系,符合獨立性檢驗的基本思想,因此,該題所選擇的統(tǒng)計方法是獨立性檢驗,故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:)將所得數(shù)據(jù)分組,得到如下頻率分布表:

1)將上面表格中缺少的數(shù)據(jù)填充完整;

2)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率

3)現(xiàn)對該廠這種產(chǎn)品的某個批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線方程為,求實數(shù),的值;

(2)若函數(shù)兩處取得極值,求實數(shù)的取值范圍;

(3)在(2)的條件下,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個關(guān)于平面圖形的命題:如圖所示,同一平面內(nèi)有兩個邊長都是a的正方形,其中一個正方形的某頂點在另一個正方形的中心,則這兩個正方形重疊部分的面積恒為,類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為__________.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logaxgx)=m2x22mx+1,若ba1,且fb,abba

1)求ab的值;

2)當(dāng)x[0,1]時,函數(shù)gx)的圖象與hx)=fx+1+m的圖象僅有一個交點,求正實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為招聘新員工設(shè)計了一個面試方案:應(yīng)聘者從道備選題中一次性隨機抽取道題,按照題目要求獨立完成規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響

1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學(xué)期望;

2)請分析比較甲、乙兩人誰的面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一平面與空間四邊形的對角線都平行,且交空間四邊形的邊,分別于,,.

1)求證:四邊形為平行四邊形;

2)若是邊的中點,,異面直線所成的角為60°,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1各條棱長均為4,且AA1⊥平面ABCDAA1的中點,MN分別在線段BB1和線段CC1上,且B1M3BM,CN3C1N

1)證明:平面DMN⊥平面BB1C1C;

2)求三棱錐B1DMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求曲線在點處的切線方程;

2)若關(guān)于的方程有三個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案