【題目】正方體的棱長(zhǎng)為1,分別是棱,的中點(diǎn),過(guò)直線的平面分別與棱、交于,設(shè),,給出以下四個(gè)命題:
①四邊形為平行四邊形;
②若四邊形面積,,則有最小值;
③若四棱錐的體積,,則為常函數(shù);
④若多面體的體積,,則為單調(diào)函數(shù).
其中假命題為( )
A.① ③ B.② C.③④ D.④
【答案】D
【解析】
試題分析:①∵平面ADD′A′∥平面BCC′B′,∴EN∥MF,同理:FN∥EM,
∴四邊形EMFN為平行四邊形,故正確;
②MENF的面積s=f(x)=(EF×MN),
當(dāng)M為BB′的中點(diǎn)時(shí),即x=時(shí),MN最短,此時(shí)面積最。收_;
③連結(jié)AF,AM,AN,則四棱錐則分割為兩個(gè)小三棱錐,
它們以AEF為底,以M,N分別為頂點(diǎn)的兩個(gè)小棱錐.因?yàn)槿切蜛EF的面積是個(gè)常數(shù).
M,N到平面AEF的距離和是個(gè)常數(shù),所以四棱錐C'-MENF的體積V為常數(shù)函數(shù),故正確.
④多面體ABCD-MENF的體積V=h(x)=VABCD-A′B′C′D′=為常數(shù)函數(shù),故錯(cuò)誤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為,當(dāng)時(shí),函數(shù)取得最大值.
(1)求函數(shù)的解析式,并寫(xiě)出它的單調(diào)增區(qū)間;
(2)若,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,三個(gè)函數(shù)的定義域均為集合.
(1)若,試判斷集合與的關(guān)系,并說(shuō)明理由;
(2)記,是否存在,使得對(duì)任意的實(shí)數(shù),函數(shù)有且僅有兩個(gè)零點(diǎn)?若存在,求出滿足條件的最小正整數(shù);若不存在,說(shuō)明理由.(以下數(shù)據(jù)供參考:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間及極值;
(3)對(duì)成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】口袋中裝有質(zhì)地大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào).如果兩個(gè)編號(hào)的和為偶數(shù)就算甲勝,否則算乙勝.
(1)求甲勝且編號(hào)的和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,滿足:對(duì)于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_(kāi)________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的一個(gè)零點(diǎn)為-2,當(dāng)時(shí)最大值為0.
(1)求的值;
(2)若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻長(zhǎng)為米(2).
⑴用表示墻的長(zhǎng);
⑵假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)(元)表示為(米)的函數(shù);
⑶當(dāng)為何值時(shí),墻壁的總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com