【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC90°,,若MPA的中點,PCDE交于點N.

1)求證:AC∥面MDE;

2)求證:PEMD;

3)求點N到平面ABM的距離.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)根據(jù)三角形中位線性質(zhì)得線線平行,再根據(jù)線面平行判定定理得結(jié)果;

2)先根據(jù)面面垂直性質(zhì)定理得AD⊥平面PDCE,再根據(jù)線面垂直判斷與性質(zhì)定理證結(jié)果;

3)利用等體積法,即由VPABCVCPAB求點面距.

1)證明:連接MN,∵四邊形PDCE為矩形,PCDE交于點N,∴NPC的中點,

MPA的中點,∴MNAC,

MN平面MDE,AC平面MDE,

AC∥面MDE;

2)證明:∵平面PDCE⊥平面ABCD,平面PDCE平面ABCDCD,∠ADC90°,

AD⊥平面PDCE,則ADPE,又PEPD,PDADD,

PE⊥平面PAD

PEMD;

3)解:∵,

PA,則,,

設(shè)C到平面PAB的距離為h,則由VPABCVCPAB,

,解得h,

NPC的中點,∴點N到平面ABM的距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為原點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)設(shè)直線軸的交點為,過點作傾斜角為的直線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在長方體ABCDA1B1C1D1,若AB=BCE,F分別是AB1BC1的中點,則下列結(jié)論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是圓上的一個動點,過點作兩條直線,它們與橢圓都只有一個公共點,且分別交圓于點.

(Ⅰ)若,求直線的方程;

(Ⅱ)①求證:對于圓上的任意點,都有成立;

②求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,D,E分別是VAVC的中點.

1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;

2)當△VAB為邊長為的正三角形時,求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )

A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加

B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍

C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍

D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為平行四邊形,側(cè)面 ,分別是的中點,已知,,.

(Ⅰ)證明:平面;

(Ⅱ)證明:

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(I)當的圖象相切時,求的值;

(Ⅱ)設(shè),討論上零點的個數(shù).

查看答案和解析>>

同步練習冊答案