【題目】已知函數(shù)f(x)=x2+ +alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)f′(x)的圖象為曲線C,曲線C上的不同兩點A(x1 , y1)、B(x2 , y2)所在直線的斜率為k,求證:當(dāng)a≤4時,|k|>1.
【答案】解:(Ⅰ)由 ,得 .
因為f(x)在區(qū)間[2,3]上單調(diào)遞增,
所以 ≥0在[2,3]上恒成立,
即 在[2,3]上恒成立,
設(shè) ,則 ,
所以g(x)在[2,3]上單調(diào)遞減,
故g(x)max=g(2)=﹣7,
所以a≥﹣7;
(Ⅱ)對于任意兩個不相等的正數(shù)x1、x2有
>
=
= ,
∴ ,
而 ,
∴ =
= > ,
故: > ,即 >1,
∴當(dāng)a≤4時,
【解析】(Ⅰ)由函數(shù)單調(diào)性,知其導(dǎo)函數(shù)≥0在[2,3]上恒成立,將問題轉(zhuǎn)化為 在[2,3]上單調(diào)遞減即可求得結(jié)果;(Ⅱ)根據(jù)題意,將 寫成 ,利用不等式的性質(zhì)證明 ,所以 > ,即得 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一、高二、高三三個年級共有300名教師,為調(diào)查他們的備課時間情況,通過分層抽樣獲得了20名教師一周的備課時間,數(shù)據(jù)如下表(單位:小時):
高一年級 | 7 | 7.5 | 8 | 8.5 | 9 | |||
高二年級 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
高三年級 | 6 | 6.5 | 7 | 8.5 | 11 | 13.5 | 17 | 18.5 |
(1)試估計該校高三年級的教師人數(shù);
(2)從高一年級和高二年級抽出的教師中,各隨機選取一人,高一年級選出的人記為甲,高二年級選出的人記為乙,假設(shè)所有教師的備課時間相對獨立,求該周甲的備課時間不比乙的備課時間長的概率;
(3)再從高一、高二、高三三個年級中各隨機抽取一名教師,他們該周的備課時間分別是8、9、10(單位:小時),這三個數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為 ,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷 與 的大小.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦距為2 的橢圓C: + =1(a>b>0)的右頂點為A,直線y= 與橢圓C交于P、Q兩點(P在Q的左邊),Q在x軸上的射影為B,且四邊形ABPQ是平行四邊形.
(1)求橢圓C的方程;
(2)斜率為k的直線l與橢圓C交于兩個不同的點M,N.
(i)若直線l過原點且與坐標(biāo)軸不重合,E是直線3x+3y﹣2=0上一點,且△EMN是以E為直角頂點的等腰直角三角形,求k的值
(ii)若M是橢圓的左頂點,D是直線MN上一點,且DA⊥AM,點G是x軸上異于點M的點,且以DN為直徑的圓恒過直線AN和DG的交點,求證:點G是定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為 .
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1和F2為雙曲線 (a>0,b>0)的兩個焦點,若F1 , F2 , P(0,2b)是正三角形的三個頂點,則雙曲線的漸近線方程是( )
A.y=± x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是( )
A.y=﹣
B.y=﹣log2x
C.y=3x
D.y=x3+x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx﹣3sin2x﹣cos2x+3.
(1)當(dāng)x∈[0, ]時,求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足 = , =2+2cos(A+C),求f(B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2, .
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過兩圓交點的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,正確的有( )
①不存在實數(shù)k,使得方程xlnx﹣ x2+k=0有兩個不等實根;
②已知△ABC中,a,b,c分別為角A,B,C的對邊,且a2+b2=2c2 , 則角C的最大值為 ;
③函數(shù)y= ln 與y=lntan 是同一函數(shù);
④在橢圓 + =1(a>b>0),左右頂點分別為A,B,若P為橢圓上任意一點(不同于A,B),則直線PA與直線PB斜率之積為定值.
A.①④
B.①③
C.①②
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com