【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個相鄰對稱中心的距離為 ,且過點(diǎn)( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大小.

【答案】
(1)解:由題意得,f(x)= sin(ωx+φ)+ [1﹣cos(ωx+φ)]

= ,

∵兩個相鄰對稱中心的距離為 ,則T=π,

,且ω>0,解得ω=2,

又f(x)過點(diǎn) ,∴ ,

,即cosφ= ,由0<φ< 得,φ=

∴f(x)= ;


(2)解:在△ABC中,由余弦定理得b2=a2+c2﹣2accosB,

∴b2﹣a2﹣c2=﹣2accosB,

同理可得,c2﹣a2﹣b2=﹣2abcosC,

代入 得, =

由正弦定理得, ,

由0<C<π得sinC≠0,∴sinBcosC=2sinAcosB﹣sinCcosB,

∴2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,

由0<A<π得sinA≠0,化簡得cosB= ,

∵0<B<π,∴B=

,則 ,

,∴ ,則 ,

解得 ,

所以當(dāng) 時, ;當(dāng) 時,


【解析】(1)根據(jù)二倍角公式、兩角差的正弦公式化簡解析式,結(jié)合條件求出周期,由周期公式求出ω,將點(diǎn) 代入解析式化簡后,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出φ,即可求出f(x);(2)由正弦定理和余弦定理化簡已知的式子,利用兩角和的正弦公式和內(nèi)角的范圍求出B,由解析式化簡 ,根據(jù)角A的范圍和特殊角的三角函數(shù)值求出A,再由內(nèi)角和定理求出C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點(diǎn)PAD的中點(diǎn),點(diǎn)QSB的中點(diǎn).

(1)求證:CD⊥平面SAD

(2)求證:PQ∥平面SCD

(3)若SASD,點(diǎn)MBC的中點(diǎn),在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sinα+cosα的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F2,線段OF1,OF2的中點(diǎn)分別為B1B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)點(diǎn)M為該橢圓上任意一點(diǎn),求|MA|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用水,實(shí)行“階梯式”水價,將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費(fèi),超過4噸但不超過8噸的部分按4元/噸收費(fèi),超過8噸的部分按8元/噸收費(fèi).

(1)求居民月用水量費(fèi)用(單位:元)關(guān)于月用電量(單位:噸)的函數(shù)解析式;

(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過16元的占66%,求的值;

(3)在滿足條件(2)的條件下,若以這100戶居民用水量的頻率代替該月全市居民用戶用水量的概率.且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.記為該市居民用戶3月份的用水費(fèi)用,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , 為棱的中點(diǎn).

(1)求證: 平面;

(2)若直線與平面所成的角為30°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理科)在平面直角坐標(biāo)系中, 是橢圓上的一個動點(diǎn),點(diǎn),則的最大值為( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1, ), =(sinx,cosx),設(shè)函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設(shè)銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,若c= ,cosB= ,且f(C)= ,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):

x

3

4

5

6

y

2.5

3

4

4.5


(1)求y關(guān)于x的線性回歸方程;(已知
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了多少噸標(biāo)準(zhǔn)煤.

查看答案和解析>>

同步練習(xí)冊答案