設等差數(shù)列{an}的前n項和為Sn,當a1,d變化時,若8(a4+a6+a8)+(a10+a12+a14+a16)是一個定值,那么下列各數(shù)中也為定值的是( 。
A、S7B、S8C、S13D、S15
分析:由已知an為等差數(shù)列及其通項公式an=a1+(n-1)d,可知已知的等式8(a4+a6+a8)+(a10+a12+a14+a16)為a1和d的關系等式,再由其前項和公式Sn=
n(a1+an)
2
即可
解答:∵an為等差數(shù)列且8(a4+a6+a8)+(a10+a12+a14+a16)為定值記為P∴8(a4+a6+a8)+(a10+a12+a14+a16)=28(a1+6d)=P∵sn=
n(a1+an)
2
 且a7=a1+6d為定值∴S13=
13(a1+a13)
2
=13a7
 也應為定值
點評:此題考查了等差數(shù)列的通項公式及前n項和公式,關鍵在于熟練的應用公式和性質,確定基本量之間的關系
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案