【題目】若函數(shù)f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(﹣x)=0;②對于定義域上的任意x1、x2 , 當x1≠x2時,恒有 <0,則稱函數(shù)f(x)為“理想函數(shù)”.給出下列三個函數(shù)中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被稱為“理想函數(shù)”的有(填相應的序號).
【答案】(3)
【解析】解:∵函數(shù)f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(﹣x)=0;
②對于定義域上的任意x1 , x2 , 當x1≠x2時,恒有 <0,則稱函數(shù)f(x)為“理想函數(shù)”,
∴“理想函數(shù)”既是奇函數(shù),又是減函數(shù),
在(1)中,f(x)= 是奇函數(shù),但不是減函數(shù),故(1)不是“理想函數(shù)”;
在(2)中,f(x)=x+1在(﹣∞,+∞)內是增函數(shù),故(2)不是“理想函數(shù)”;
在(3)中,f(x)= ,是奇函數(shù),且是減函數(shù),故(3)能被稱為“理想函數(shù)”.
故答案為:(3).
由已知得“理想函數(shù)”既是奇函數(shù),又是減函數(shù),由此判斷所給三個函數(shù)的奇偶性和單調性,能求出結果.
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左頂點為,且橢圓與直線相切,
(1)求橢圓的標準方程;
(2)過點的動直線與橢圓交于兩點,設為坐標原點,是否存在常數(shù),使得?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實數(shù)x滿足 ≤0,
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)為定義在R奇函數(shù),當x>0時,f(x)=﹣2x2+4x+1,
(1)求:當x<0時,f(x)的表達式;
(2)用分段函數(shù)寫出f(x)的表達式;
(3)若函數(shù)h(x)=f(x)﹣a恰有三個零點,求a的取值范圍(只要求寫出結果).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知( ﹣ )n的展開式中,第三項的系數(shù)為144.
(1)求該展開式中所有偶數(shù)項的二項式系數(shù)之和;
(2)求該展開式的所有有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn= .
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)令cn= ,{cn}的前n項和為Tn , 用數(shù)學歸納法證明Tn≥ (n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣lnx﹣1,g(x)=k(f(x)﹣x)+ ,(k∈R).
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)求函數(shù)g(x)的單調區(qū)間;
(3)當1<k<3,x∈(1,e)時,求證:g(x)>﹣ (1+ln3).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的左焦點與拋物線的焦點重合,直線與以原點為圓心,以橢圓的離心率為半徑的圓相切.
(Ⅰ)求該橢圓的方程;
(Ⅱ)設點坐標為,若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com