【題目】不等式(x+2)(x﹣1)>0的解集為(
A.{x|x<﹣2或x>1}
B.{x|﹣2<x<1}
C.{x|x<﹣1或x>2}
D.{x|﹣1<x<2}

【答案】A
【解析】解:因為(x+2)(x﹣1)=0的兩根為﹣2和1,
所以y=(x+2)(x﹣1)的圖象為開口方向向上,與x軸的交點為(﹣2,0)和(1,0)的二次函數(shù),
因此滿足(x+2)(x﹣1)>0的部分為x軸上方的,
即所求不等式的解集為:{x|x<﹣2或x>1},
故選A.
【考點精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為上位于第一象限的任意一點,過點的直線于另一點,交軸的正半軸于點.

(1)若當(dāng)點的橫坐標(biāo)為,且為等腰三角形,求的方程;

(2)對于(1)中求出的拋物線,若點,記點關(guān)于軸的對稱點為軸于點,且,求證:點的坐標(biāo)為,并求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左、右焦點,以坐標(biāo)原點O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,則當(dāng)△PF1F2的面積等于a2時,雙曲線的離心率為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣3x+(a﹣1)lnx,g(x)=ax,h(x)=f(x)﹣g(x)+3x.
(1)當(dāng)a=5時,求函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的最小值;
(2)當(dāng)a=3時,求函數(shù)h(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風(fēng)悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:

做不到“光盤”

能做到“光盤”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二維空間中圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2;三維空間中球的二維測度(表面積)S=4πr2 , 三維測度(體積)V= πr3;四維空間中“超球”的三維測度V=8πr3 , 則猜想其四維測度W=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D為邊BC上一點,AD=6,BD=3,DC=2.

(1)若ADBC,求∠BAC的大;

(2)若∠ABC,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓)與直線 ),四點, , 中有三個點在橢圓上,剩余一個點在直線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若動點在直線上,過作直線交橢圓, 兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案