在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C1的極坐標方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值

(1)(2)

解析試題分析:解:(1)原式可化為, 即 
(2)依題意可設由(Ⅰ)知圓C圓心坐標(2,0)。

,   ,   所以.
考點:坐標系與參數(shù)方程
點評:主要是考查了極坐標于參數(shù)方程的運用,利用參數(shù)方程結合三角函數(shù)求解最值是解題的關鍵,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

平面內與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上 兩點,所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關系;
(Ⅱ)當時,對應的曲線為;對給定的,對應的曲線為,若曲線的斜率為的切線與曲線相交于兩點,且為坐標原點),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左、右焦點分別為,
上頂點為,在軸負半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右焦點為,拋物線C:以F2為焦點且與橢圓相交于點、,點軸上方,直線與拋物線相切.
(1)求拋物線的方程和點、的坐標;
(2)設A,B是拋物線C上兩動點,如果直線,軸分別交于點. 是以,為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點,過原點和軸不重合的直線與橢圓 相交于,兩點,且最小值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線與橢圓相交于,兩點,當,兩點橫坐標不相等時,問:是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,直線過點,且與橢圓相切于點.(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點的直線與橢圓相交于不同的兩點、,使得?若存在,試求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:的離心率為,過右焦點且斜率為的直線交橢圓兩點,為弦的中點,為坐標原點.
(1)求直線的斜率
(2)求證:對于橢圓上的任意一點,都存在,使得成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設直線與拋物線交于兩點.
(1)求線段的長;(2)若拋物線的焦點為,求的值.

查看答案和解析>>

同步練習冊答案