方程2|x|=cosx的實(shí)根有(    )

A.無(wú)數(shù)個(gè)           B.3個(gè)                C.2個(gè)              D.1個(gè)

解析:在同一坐標(biāo)系中畫(huà)出y=2|x|與y=cosx的圖象,如圖,交點(diǎn)為(0,1).

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個(gè)特征向量是e1=
1
1
,屬于λ2的一個(gè)特征向量是e2=
-1
2
,點(diǎn)A對(duì)應(yīng)的列向量是a=
1
4

(Ⅰ)設(shè)a=me1+ne2,求實(shí)數(shù)m,n的值.
(Ⅱ)求點(diǎn)A在M5作用下的點(diǎn)的坐標(biāo).

(B)4-2極坐標(biāo)與參數(shù)方程
已知直線l的極坐標(biāo)方程為ρsin(θ-
π
3
)=3
,曲線C的參數(shù)方程為
x=cosθ
y=3sinθ
,設(shè)P點(diǎn)是曲線C上的任意一點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=2-t
y=t
(t∈R),圓C的參數(shù)方程為
x=cosθ+1
y=sinθ
(θ∈[0,2π]),則直線l截圓C所得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長(zhǎng)度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個(gè)特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:(考生可以在以下三個(gè)題任選一道題作答,如果多做以考生所作的第一道題為準(zhǔn))
(a) 不等式|x-4|-|x-2|>1的解集為
(-∞,
5
2
)
(-∞,
5
2
)

(b) 已知直線l的極坐標(biāo)方程為:ρcosθ-ρsinθ-
2
=0
,圓C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),那么直線l與圓C的位置關(guān)系為
相切
相切

(c) 如圖已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=
2
,AF:FB:BE=4:2:1
.若CE與圓相切,則CE的長(zhǎng)為
7
2
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城二模)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知圓C的參數(shù)方程為
x=cosθ
y=sinθ+2
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ+ρcosθ=1,求直線l截圓C所得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案