【題目】某高三畢業(yè)班甲、乙兩名同學(xué)在連續(xù)的8次數(shù)學(xué)周練中,統(tǒng)計解答題失分的莖葉圖如下:
(1)比較這兩名同學(xué)8次周練解答題失分的均值和方差的大小,并判斷哪位同學(xué)做解答題相對穩(wěn)定些;
(2)以上述數(shù)據(jù)統(tǒng)計甲、乙兩名同學(xué)失分超過15分的頻率作為頻率,假設(shè)甲、乙兩名同學(xué)在同一次周練中失分多少互不影響,預(yù)測在接下來的2次周練中,甲、乙兩名同學(xué)失分均超過15分的次數(shù)X的分布列和均值.
【答案】
(1)解: = (7+9+11+18+18+16+23+28)=15,
= (7+8+10+15+17+19+21+23)=15,
= [(﹣8)2+(﹣6)2+(﹣4)2+(﹣2)2+(﹣2)2+12+82+132]=44.75,
= [(﹣8)2+(﹣7)2+(﹣5)2+02+22+42+62+82]=32.25,
∵甲、乙兩名隊員的得分均值相等,甲的方差比乙的方差大,
∴乙同學(xué)答題相對穩(wěn)定些.
(2)解:根據(jù)統(tǒng)計結(jié)果,在一次周練中,甲和乙失分超過15分的概率分別是 , ,
兩人失分均超過15分的概率為p1p2= ,
X的所有可能取值為0,1,2,依題意X~B(2, ),
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
∴X的分布列為:
X | 0 | 1 | 2 |
P |
EX=2× = .
【解析】(1)分別求出甲、乙兩名隊員的得分均值和方差,由此能求出結(jié)果.(2)X的所有可能取值為0,1,2,依題意X~B(2, ),由此能求出X的分布列和EX.
【考點精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少,以及對離散型隨機變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,且橢圓經(jīng)過點, ,拋物線過點.
(Ⅰ)求、的標準方程;
(Ⅱ)請問是否存在直線滿足條件:
①過的焦點;②與交不同兩點、且滿足.
若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-2+e2-x,若實數(shù)x1、x2滿足x1<x2,x1+x2<4且(x1-2)(x2-2)<0,則下列結(jié)論正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1 , F2 , 過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線L:x2=2py(p>0)的焦點F且斜率為 的直線與拋物線L在第一象限的交點為P,且|PF|=5.
(1)求拋物線L的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線L于不同的兩點M、N,若拋物線上一點C滿足 =λ( + )(λ>0),求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)滿足f(2x)=x2-2x.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)=在(1,4)上有實根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點M(1,f(1))處的切線方程為
求(1)實數(shù)a,b的值;
(2)函數(shù)的單調(diào)區(qū)間及在區(qū)間[0,3]上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com