【題目】計算:(1) ;

(2) .

【答案】(1) ;(2).

【解析】試題分析:(1)先將根式化為分數(shù)指數(shù)冪、再利用冪指數(shù)的運算法則進行化簡求值; (2) 直接利用對數(shù)的運算法則進行求解,化簡過程中注意避免計算錯誤.

試題解析(1)原式===.

(2)原式===

【方法點晴】本題主要考查對數(shù)的運算、指數(shù)冪的運算,屬于中檔題. 指數(shù)冪運算的四個原則:(1)有括號的先算括號里的,無括號的先做指數(shù)運算;(2)先乘除后加減,負指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)是負數(shù),先確定符號,底數(shù)是小數(shù),先化成分數(shù),底數(shù)是帶分數(shù)的,先化成假分數(shù);(4)若是根式,應化為分數(shù)指數(shù)冪,盡可能用冪的形式表示,運用指數(shù)冪的運算性質來解答(化簡過程中一定要注意等價性,特別注意開偶次方根時函數(shù)的定義域)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)將直線l: (t為參數(shù))化為極坐標方程;
(2)設P是(1)中直線l上的動點,定點A( ),B是曲線ρ=﹣2sinθ上的動點,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=xlnx+ax,a∈R.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關于y軸對稱,求證:直線AC恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1將根式化為分式指數(shù)冪的形式;

2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為奇函數(shù), 為偶函數(shù),

(1)求的解析式及定義域

(2)若關于的不等式恒成立,求實數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個零點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線 的極坐標方程是 ,圓 的極坐標方程是
(1)求 交點的極坐標;
(2)設 的圓心, 交點連線的中點,已知直線 的參數(shù)方程是 為參數(shù)),求 的值.

查看答案和解析>>

同步練習冊答案