【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)的年平均濃度不得超過微克/立方米,24小時平均濃度不得超過微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別

濃度

(微克/立方米)

頻數(shù)(天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1

1從樣本中24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天

24小時平均濃度超過75微克/立方米的概率;

2求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是

否需要改進說明理由

【答案】1;2去年該居民區(qū)年平均濃度不符合環(huán)境空氣質(zhì)量標準故該居民區(qū)的環(huán)境需要改進

【解析】

試題分析:1利用列舉法求古典概型的概率;2計算出去年該居民區(qū)年平均濃度,故該居民區(qū)的環(huán)境需要改進

試題解析:1小時平均濃度在內(nèi)的三天記為,24小時平均濃度在內(nèi)的兩天記為,

所以5天任取2天的情況有:,,,,,,10種.

其中符合條件的有:,,,共6種.

所以所求的概率

2去年該居民區(qū)年平均濃度為

微克/立方米

因為所以去年該居民區(qū)年平均濃度不符合環(huán)境空氣質(zhì)量標準,故該居民區(qū)的環(huán)境需要改進

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

若商店一天購進該商品10件,求當天的利潤y單位:元關于當天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(1,a),圓x2y2=4.

(1)若過點A的圓的切線只有一條,求a的值及切線方程;

(2)若過點A且在兩坐標軸上截距相等的直線被圓截得的弦長為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個班共有學生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).

6

7

6

7

8

5

6

7

8

(1)試估計班學生人數(shù);

(2)從班和班抽出來的學生中各選一名,記班選出的學生為甲,班選出的學生為乙,求甲的鍛煉時間大于乙的鍛煉時間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.

(1)設M是PC上的一點,證明:平面MBD⊥平面PAD;

(2)當M點位于線段PC什么位置時,PA∥平面MBD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)班有男同學45名,女同學15名,老師按照分層抽樣的方法抽取4人組建了一個課外興趣小組.

(I)求課外興趣小組中男、女同學的人數(shù);

(II)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是從小組里選出一名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選出一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;

(III)在(II)的條件下,第一次做實驗的同學A得到的實驗數(shù)據(jù)為38,40,41,42,44,第二次做實驗的同學B得到的實驗數(shù)據(jù)為39,40,40,42,44,請問哪位同學的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標有數(shù)字1,2,3,4.

(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標數(shù)字相同甲獲勝,所標數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.

(1)求橢圓的方程;

(2)若分別是橢圓長軸的左、右端點,動點滿足,連結,交橢圓于點,證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:某污水處理廠要在一個矩形污水處理池(的池底水平鋪設污水凈化管道(是直角頂點)來處理污水,管道越長污水凈化效果越好,設計要求管道的的接口的中點,分別落在線段上。已知米,米,記.

1試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

2,求此時管道的長度;

3取何值時,污水凈化效果最好?并求出此時管道的長度。

查看答案和解析>>

同步練習冊答案