【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 ,設(shè){Sn}的前n項(xiàng)和為Tn , T2017=

【答案】
【解析】解:由Sn=(﹣1)nan+ , 當(dāng)n≥2時,an=Sn﹣Sn1=(﹣1)nan﹣(﹣1)n1an1
n=2k(k∈N*)為偶數(shù)時,a2k1= ,
n=2k+1為奇數(shù)時,2a2k+1+a2k=﹣ ,∴a2k=﹣
∴﹣a2k1+a2k=﹣ ,
∴T2017=(﹣a1+a2﹣a3+…﹣a2015+a2016﹣a2017)+
=﹣2( +…+ )+
=﹣2× +
=
所以答案是:
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(d)的立方成正比”,此即V=kd3 , 與此類似,我們可以得到: ⑴正四面體(所有棱長都相等的四面體)的體積(V)與它的棱長(a)的立方成正比,即V=ma3;
⑵正方體的體積(V)與它的棱長(a)的立方成正比,即V=na3;
⑶正八面體(所有棱長都相等的八面體)的體積(V)與它的棱長(a)的立方成正比,即V=ta3;
那么m:n:t=(
A.1:6 :4
B. :12:16
C. :1:
D. :6:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:

分?jǐn)?shù)大于等于120分

分?jǐn)?shù)不足120分

合 計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合 計

45

(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
(Ⅱ)(i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)﹣1(ω>0,|φ|<π)的一個零點(diǎn)是 是y=f(x)的圖象的一條對稱軸,則ω取最小值時,f(x)的單調(diào)增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x﹣y=0平行的切線,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=f(x)+ ,若g(x)有極大值點(diǎn)x1 , 求證: >a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為 的直線l與橢圓C交于A,B兩點(diǎn),點(diǎn)P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點(diǎn)M,N,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(1,+∞)上單調(diào)遞增的為(
A.y=ln(x2+1)
B.y=cosx
C.y=x﹣lnx
D.y=( |x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足4cos2 ﹣cos2(B+C)= ,若a=2,則△ABC的面積的最大值是

查看答案和解析>>

同步練習(xí)冊答案