【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

【答案】
(1)證明:∵PA⊥底面ABCD,CD平面ABCD,∴PA⊥CD,

又AC⊥CD,AC∩PA=A,

∴CD⊥平面PAC,又AE平面PAC,

∴CD⊥AE;


(2)證明:∵PA⊥底面ABCD,AB平面ABCD∴PA⊥AB,

又AD⊥AB,AD∩PA=A

∴AB⊥平面PAD,又PD平面PAD∴AB⊥PD,

由PA=AB=BC,∠ABC=60°,則△ABC是正三角形.

∴AC=AB∴PA=PC

∵E是PC中點(diǎn)∴AE⊥PC

由(1)知AE⊥CD,又CD∩PC=C∴AE⊥平面PCD

∴AE⊥PD,又AB⊥PD,AB∩AE=A

∴PD⊥平面ABE


(3)解:過E點(diǎn)作EM⊥PD于M點(diǎn),連結(jié)AM,

由(2)知AE⊥平面PCD,則AE⊥PD,

則PD⊥平面AEM,∴AM⊥PD,

則∠AME是二面角A﹣PD﹣C的平面角.

設(shè)AC=a,AD= = ,PA=A,PD= = a,

AM= = = ,

在Rt△AEM中,AE= a,EM= = = a,

則tan∠AME= = =


【解析】(1)運(yùn)用線面垂直的判定和性質(zhì)定理即可得證CD⊥AE;(2)運(yùn)用線面垂直的性質(zhì)和判定定理,即可得到PD⊥平面ABE;(3)過E點(diǎn)作EM⊥PD于M點(diǎn),連結(jié)AM,由(2)知AE⊥平面PCD,則AM⊥PD,則∠AME是二面角A﹣PD﹣C的平面角.通過解三角形AEM,即可得到所求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面⊥平面,

是等邊三角形, , .

(Ⅰ)證明:平面⊥平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)F(x)=g(x)+h(x)=ex , 且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若對任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,2 ]
B.(﹣∞,2
C.(﹣∞,2]
D.(﹣∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,已知sinA+sinC=psinB且 .若角B為銳角,則p的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線兩點(diǎn),交圓兩點(diǎn), 在第一象限, 在第四象限.

(1)求拋物線的方程;

(2)是否存在直線,使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,與y= 的奇偶性和單調(diào)性都相同的是(
A.f(x)=x1
B.f(x)=x
C.f(x)=x2
D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)證明上為增函數(shù);

(2)當(dāng)時,解不等式;

(3)若上恒成立,求的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案