【題目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),記函數(shù)f(x)= . (Ⅰ)求f(x)的表達式,以及f(x)取最大值時x的取值集合;
(Ⅱ)設△ABC三內(nèi)角A,B,C的對應邊分別為a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面積.
【答案】解:(Ⅰ)f(x)= =2 sinxcosx+sin2x﹣cos2x= sin2x﹣cos2x=2sin(2x﹣ ), 當2x﹣ =2kπ+ (k∈Z)時,f(x)max=2,
對應x的集合為{x|x=kπ+ ,k∈Z}.
(Ⅱ)由f(C)=2,得2sin(2C﹣ )=1,
∵0<C<π,∴﹣ <2C﹣ < ,∴2C﹣ = ,解得C= ,
又∵a+b=2 ,c= ,由余弦定理得c2=a2+b2﹣ab,
∴12﹣3ab=6,即ab=2,…
由面積公式得△ABC面積為S△ABC= = .
【解析】(Ⅰ)f(x)= =2 sinxcosx+sin2x﹣cos2x= sin2x﹣cos2x=2sin(2x﹣ ),利用三角函數(shù)的性質(zhì),即可求出f(x)取最大值時x的取值集合;(Ⅱ)先求出C,再求出△ABC的面積.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】直線l經(jīng)過兩點(2,1),(6,3).
(1)求直線l的方程;
(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省每年損失耕地20萬畝,每畝耕地價值24000元,為了減少耕地損失,決定按耕地價格的t%征收耕地占用稅,這樣每年的耕地損失可減少 t萬畝,為了既可減少耕地的損失又保證此項稅收一年不少于9000萬元,則t的取值范圍是( )
A.[1,3]
B.[3,5]
C.[5,7]
D.[7,9]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E為PC中點.求二面角E﹣BD﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率為 ,右焦點為F,橢圓與y軸的正半軸交于點B,且|BF|= .
(1)求橢圓E的方程;
(2)若斜率為1的直線l經(jīng)過點(1,0),與橢圓E相交于不同的兩點M,N,在橢圓E上是否存在點P,使得△PMN的面積為 ,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x∈[1,2],x2﹣a≥0;命題q:x0∈R,使得 +(a﹣1)x0+1<0.若“p或q”為真,“p且q”為假,則實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an},{bn}中,已知a1=2,b1=4,且﹣an , bn , an+1成等差數(shù)列,﹣bn , an , bn+1也成等差數(shù)列. (Ⅰ)求證:數(shù)列{an+bn}和{an﹣bn}都是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)若cn=(an﹣3n)log3[an﹣(﹣1)n],求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)y=f(x)的圖象上每一點的縱坐標保持不變,橫坐標伸長到原來的2倍,再將整個圖象沿x軸向右平移 個單位,沿y軸向下平移1個單位,得到函數(shù)y= sinx的圖象,則y=f(x)的解析式為( )
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com