【題目】已知a,bc為正實數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|;

2)(a3+b3+c3)(≥3.

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)ab,c為正實數(shù),且滿足a+b+c1,得到b+c1=﹣a0,則|a|+|b+c1||a|+|a|,再利用絕對值三角不等式求解.

2)利用(a3+b3+c3≥3abc,得到(a3+b3+c3)(≥3abc),進而變形為,再利用基本不等式求解.

1)∵a,bc為正實數(shù),且滿足a+b+c1

b+c1=﹣a0,

|a|+|b+c1||a|+|a|≥|a+(﹣a|.

當且僅當(a)(﹣a≥0,即0時,等號成立.

|a|+|b+c1|

2)(a3+b3+c3)(≥3abc,

,

,

3a+b+c)=3.

當且僅當abc時等號成立.

∴(a3+b3+c3)(≥3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某民航部門統(tǒng)計的2019年春運期間12個城市售出的往返機票的平均價格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升

B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高

C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州

D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為矩形,平面平面,

1)證明:平面

2)若,為棱的中點,,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全民參與是打贏新型冠狀病毒防疫戰(zhàn)的根本方法.在防控疫情的過程中,某小區(qū)的“卡口”工作人員由“社區(qū)工作者”“下沉干部”“志愿者”三種身份的人員構(gòu)成,其中社區(qū)工作者3人,下沉干部2人,志愿者1.某電視臺某天上午隨機抽取2人進行訪談,某報社在該天下午隨機抽取1人進行訪談.

1)設表示上午抽到的社區(qū)工作者的人數(shù),求隨機變量的分布列和數(shù)學期望;

2)設為事件“全天抽到的名工作人員的身份互不相同”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,點的極坐標,直線經(jīng)過點,且傾斜角為.

1)寫出曲線的直角坐標方程和直線的標準參數(shù)方程;

2)直線與曲線交于兩點,直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團隊隨機地選取了服用甲藥的患者和服用乙藥的患者進行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖

.

1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說明理由;

2)為了進一步研究兩種藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時間(單位:天),統(tǒng)計并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說明理由;

3)標準差s除了可以用來刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時間在(3s3s)之外的患者,就認為病毒有可能發(fā)生了變異,需要對該患者進行進一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應該對該患者進行進一步檢查?

參考公式:s,

參考數(shù)據(jù):48.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市有東西南北四個進入城區(qū)主干道的人口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設每個入口是否發(fā)生擁堵相互獨立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.

(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.

(2)各入口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為m(,且).方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當日需給每位交通協(xié)管員的費用為200.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學期望為依據(jù),你認為在這兩個方案中應該如何選擇?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球表面積的最大值為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案