【題目】已知函數(shù),實(shí)數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若存在,使得關(guān)于x的不等式成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)采用分類(lèi)討論的方法,與,根據(jù)導(dǎo)數(shù)判斷原函數(shù)的單調(diào)性,可得結(jié)果.
(2)化簡(jiǎn)式子,并構(gòu)造函數(shù),計(jì)算,然后再次構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷的單調(diào)情況,可得結(jié)果.
(1)由題知的定義域?yàn)?/span>,
.
∵,,∴由可得.
(i)當(dāng)時(shí),
,當(dāng)時(shí),單遞減;
(ii)當(dāng)時(shí),,
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
綜上所述,時(shí),在區(qū)間上單調(diào)遞減;
當(dāng)時(shí),在區(qū)間上單調(diào)遞減,
在區(qū)間上單調(diào)遞增.
(2)由題意:不等式在成立
即在時(shí)有解.
設(shè),,只需.
則,因?yàn)?/span>,
所以在上,,
在上,.
所以在上單調(diào)遞減,在上單調(diào)遞增.
因此.
不等式在成立,
則恒成立.
又,所以恒成立.
令,則.
在上,,單調(diào)遞增;
在上,,單調(diào)遞減.
所以.
因此解可得且,
即且.
所以實(shí)數(shù)a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓()的左右焦點(diǎn)分別為,橢圓的上頂點(diǎn)為點(diǎn),點(diǎn)為橢圓上一點(diǎn),且.
(1)求橢圓的離心率;
(2)若,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時(shí),表示收入完全平等,勞倫茨曲線為折線時(shí),表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,為的面積.將,稱為基尼系數(shù).對(duì)于下列說(shuō)法:
①越小,則國(guó)民分配越公平;
②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;
③若某國(guó)家某年的勞倫茨曲線近似為,則;
④若某國(guó)家某年的勞倫茨曲線近似為,則.
其中不正確的是:( )
A.①④B.②③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省開(kāi)展“精準(zhǔn)脫貧,攜手同行”的主題活動(dòng),某貧困縣統(tǒng)計(jì)了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計(jì)結(jié)果見(jiàn)下表.
走訪數(shù)量區(qū)間 | 頻數(shù) | 頻率 |
b | ||
10 | ||
38 | ||
a | 0.27 | |
9 | ||
總計(jì) | 100 | 1.00 |
(1)求a與b的值;
(2)根據(jù)表中數(shù)據(jù),估計(jì)這100名基層干部走訪數(shù)量的中位數(shù)(精確到個(gè)位);
(3)如果把走訪貧困戶不少于35戶視為“工作出色”,按照分層抽樣,從“工作出色”的基層干部中抽取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若,對(duì)于給定實(shí)數(shù),總存在實(shí)數(shù),使得關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)根.
(i)求實(shí)數(shù)的取值范圍;
(ii)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店招聘外賣(mài)騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒(méi)有提成,從第45單開(kāi)始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案(a)的概率;
(3)若僅從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為.為的右焦點(diǎn),為上一點(diǎn),軸,的半徑為.
(1)求和的方程;
(2)若直線與交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二面角P﹣AB﹣C的大小為120°,且∠PAB=∠ABC=90°,AB=AP,AB+BC=6.若點(diǎn)P,A,B,C都在同一個(gè)球面上,則該球的表面積的最小值為( )
A.45πB.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com