設(shè)a>0,函數(shù)f(x)=-ax在[1,+∞)上是單調(diào)函數(shù).
(1)求實數(shù)a的取值范圍;
(2)設(shè)≥1,f(x)≥1,且f(f())=,求證:f()=
(1)a的取值范圍是(0,3
 。2)證明見解析

(1)任取、[1,+∞]且,則
  
  ∵ ,∴ 
  顯然,不存在一個常數(shù)a,使得恒為負(fù)數(shù).
  ∵ f(x)有確定的單調(diào)性, ∴ 必存在一個常數(shù)a,使恒為正數(shù),即
  ∴ a≤3,這時有f()>f(). ∴ f(x)在[1,+∞上是增函數(shù),故a的取值范圍是(0,3
 。2)設(shè)f()=u,則f(u)=,于是
  則, 即 
  ∵ ,, 
又∵ ,∴ . ∴ ,即,故
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= 
(1)、求f(2)與f(),f(3)與f();
(2)、由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x) 與f()有什么關(guān)系?并證明你的結(jié)論;
(3)、求f(1)+f(2)+f(3)+的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)已知函數(shù):求函數(shù)的最小值;
(Ⅱ)證明:;
(Ⅲ)定理:若 均為正數(shù),則有 成立(其中.請你構(gòu)造一個函數(shù),證明:
當(dāng)均為正數(shù)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義域在上的奇函數(shù),且其圖象上任意兩點連線的斜率均小于零.
(l)求證上是減函數(shù);
(ll)如果,的定義域的交集為空集,求實數(shù)的取值范圍;
(lll)證明若,則,存在公共的定義域,并求這個公共的空義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=,定義域為[-1,1]
(Ⅰ)若a=b=0,求f(x)的最小值; (Ⅱ)若對任意x∈[-1,1],不等式6≤f(x)≤5+均成立,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在定義域內(nèi)是增函數(shù)還是減函數(shù)?請說明理由;
(3)已知,解關(guān)于不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)某生產(chǎn)旅游紀(jì)念品的工廠,擬在2010年度將進(jìn)行系列促銷活動.經(jīng)市場調(diào)查和測算,該紀(jì)念品的年銷售量x萬件與年促銷費用t萬元之間滿足3-xt+1成反比例.若不搞促銷活動,紀(jì)念品的年銷售量只有1萬件.已知工廠2010年生產(chǎn)紀(jì)念品的固定投資為3萬元,每生產(chǎn)1萬件紀(jì)念品另外需要投資32萬元.當(dāng)工廠把每件紀(jì)念品的售價定為:“年平均每件生產(chǎn)成本的150%”與“年平均每件所占促銷費一半”之和時,則當(dāng)年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費用)(1)求出xt所滿足的關(guān)系式;(2)請把該工廠2010年的年利潤y萬元表示成促銷費t萬元的函數(shù);(3)試問:當(dāng)2010年的促銷費投入多少萬元時,該工廠的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)在海拔m處的大氣壓強(qiáng)是Pa,之間的函數(shù)關(guān)系式是,其中,為常量.測得某地某天海平面的大氣壓強(qiáng)為Pa,1000m高空的大氣壓為Pa,求600m高空的大氣壓強(qiáng)(保留個有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),當(dāng)時,有最小值;
(1)求的值;                  (2)求滿足的集合;

查看答案和解析>>

同步練習(xí)冊答案