精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)如圖所示,在四棱錐中,平面,

,,的中點.

(1)證明:平面;

(2)若,,,求二面角的正切值.

 

【答案】

解:(1)證明:∵平面,∴

,的中點

為△邊上的高,

。

平面。……………………6分

(2)方法1:延長DA、CB相交于點F,連接PF、DB

過點P作PE⊥BC,垂足為E,連接HE

由(1)知平面,則PH⊥BC

又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE

∴∠PEH就是所求二面角P-BC-D的平面角……………9分

在△FDC中,∵PH=1,AD=1,∴PD=

平面,∴CD⊥平面PAD

∴CD⊥PD,∵PC=,∴CD=4

,∴AB=2,∴BD=,

∴AB是△FCD的中位線,FD=CD

∴BD⊥CF

∴HE=

∵PH=1,∴……………14分

    

方法2:由(1)知平面,如圖建立空間直角坐標系.

∵PH=1,AD=1,∴PD=

平面,,∴CD⊥平面PAD

∴CD⊥PD,∵PC=,∴CD=4

設平面BCD、平面PBC的法向量分別為

,設

,令,則

,設二面角P-BC-D為,

,故

 

【解析】本試題主要是考查了線面垂直和二面角的求解的綜合運用。

(1)因平面,∴。∵,的中點

為△邊上的高,∴!

平面

(2)延長DA、CB相交于點F,連接PF、DB過點P作PE⊥BC,垂足為E,連接HE

由(1)知平面,則PH⊥BC又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE

∴∠PEH就是所求二面角P-BC-D的平面角,然后利用解三角形得到結論。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案