精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個焦點為,其短軸上的一個端點到距離為

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)若過點的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為,求的值;

(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線,使得與橢圓C都只有一個公共點,試判斷直線的斜率之積是否為定值,并說明理由.

 

 

【答案】

解:(Ⅰ)由題意得:,半焦距       

橢圓C方程為                       

“伴隨圓”方程為                              ……………3分

(Ⅱ)則設過點且與橢圓有一個交點的直線為:,         

整理得

所以,解①    ……………5分

又因為直線截橢圓的“伴隨圓”所得的弦長為,

則有化簡得   ②      ……………7分

聯立①②解得,,

所以,則                   ……………8分

(Ⅲ)當都有斜率時,設點其中,

設經過點與橢圓只有一個公共點的直線為

,消去得到  ……………9分

,

經過化簡得到:,               ……………11分

因為,所以有,

的斜率分別為,因為與橢圓都只有一個公共點,

所以滿足方程,

因而,即直線的斜率之積是為定值           ……………13分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案