【題目】已知.
(1)若恒成立,求實數(shù)a的取值范圍;
(2)若關(guān)于x的方程有兩個不同的解,求實數(shù)a的取值范圍.
【答案】(1);(2).
【解析】
(1)利用等價轉(zhuǎn)化,求解的最大值即可;
(2)把的解的情況等價轉(zhuǎn)化為有兩解,結(jié)合圖象變化趨勢可求.
(1)因為.
若x≤0時,f(x)≤0,g(x)>0,f(x)≤g(x)恒成立;
若x>0,f(x)≤g(x)恒成立等價為,
即,即有,
設(shè), ,
令,
可得在x>0遞減,當(dāng)x>1時,,即,在x>1遞減;
當(dāng)0<x<1時,,即,在0<x<1遞增,
則在x=1處取得極大值,且為最大值1,,
所以.
(2)若x≤0時,,無解;
當(dāng)x>0時,恒成立等價為,
即,即有有兩解,
設(shè),
由(1)可知在x=1處取得極大值,且為最大值1,,
且,,當(dāng),
可得0<a<1時,關(guān)于x的方程有兩個不同的解,
故a的范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物探測器在水中逆流行進時,所消耗的能量為E=cvnT,其中v為行進時相對于水的速度,T為行進時的時間(單位:h),c為常數(shù),n為能量次級數(shù),如果水的速度為4km/h,該生物探測器在水中逆流行進200km.
(1)求T關(guān)于v的函數(shù)關(guān)系式;
(2)①當(dāng)能量次級數(shù)為2時,求探測器消耗的最少能量;
②當(dāng)能量次級數(shù)為3時,試確定v的大小,使該探測器消耗的能量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊長分別為a、b、c,且acosB+bcosA=2ccosB.
(1)若a=3,,求c的值;
(2)若,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(ⅰ)剔除異常數(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程;
(ⅱ)若廣告投入量時,該模型收益的預(yù)報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中.直線1的參數(shù)方程為(t為參數(shù)).在以坐標(biāo)原點為極點,x軸的非負半軸為極軸的極坐標(biāo)系中.曲線C的極坐標(biāo)方程為ρ=2cosθ.
(1)若曲線C關(guān)于直線l對稱,求a的值;
(2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
參考公式:,其中
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,,點是平面內(nèi)的動點,且,記的軌跡是.
(1)求曲線的方程;
(2)過點引直線交曲線于兩點,點關(guān)于軸的對稱點為,證明直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機調(diào)查了80名新生,得到如下2×2列聯(lián)表
愿意 | 不愿意 | 合計 | |
男 | x | 5 | M |
女 | y | z | 40 |
合計 | N | 25 | 80 |
(1)寫出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認為愿意參加軍訓(xùn)與性別有關(guān);
(2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線與橢圓的兩交點間距離為.
(1)求橢圓的方程;
(2)如圖,設(shè)是橢圓上的一動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com