【題目】已知函數(shù).

1)若有兩個(gè)不同的極值點(diǎn),求實(shí)數(shù)的取值范圍;

2)在(1)的條件下,求證:.

【答案】1;(2)詳見解析.

【解析】

(1)由,根據(jù)有兩個(gè)不同的極值點(diǎn),則有兩個(gè)不同的零點(diǎn),即方程有兩個(gè)不同的實(shí)根,轉(zhuǎn)化為直線的圖象有兩個(gè)不同的交點(diǎn)求解.

(2)由(1)知,設(shè),則,由,,要證,將 代入整理為,再令,轉(zhuǎn)化為,再構(gòu)造函數(shù),研究其最大值即可.

(1)由,

有兩個(gè)不同的極值點(diǎn),,則有兩個(gè)不同的零點(diǎn),

即方程有兩個(gè)不同的實(shí)根,

即直線的圖象有兩個(gè)不同的交點(diǎn),

設(shè),則,

時(shí),單調(diào)遞增,且的取值范圍是;

時(shí),單調(diào)遞減,且的取值范圍是

所以當(dāng)時(shí),直線的圖象有兩個(gè)不同的交點(diǎn),

有兩個(gè)不同的極值點(diǎn),

故實(shí)數(shù)的取值范圍是.

(2)由(1)知,設(shè),則,

,

所以要證,只需證,

即證,即證,

設(shè),即證,即證,

設(shè),則,

所以是增函數(shù),,

所以,從而有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由甲、乙、丙三個(gè)人組成的團(tuán)隊(duì)參加某項(xiàng)闖關(guān)游戲,第一關(guān)解密碼鎖,3個(gè)人依次進(jìn)行,每人必須在1分鐘內(nèi)完成,否則派下一個(gè)人.3個(gè)人中只要有一人能解開密碼鎖,則該團(tuán)隊(duì)進(jìn)入下一關(guān),否則淘汰出局.根據(jù)以往100次的測試,分別獲得甲、乙解開密碼鎖所需時(shí)間的頻率分布直方圖.

1)若甲解開密碼鎖所需時(shí)間的中位數(shù)為47,求、的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;

2)若以解開密碼鎖所需時(shí)間位于各區(qū)間的頻率代替解開密碼鎖所需時(shí)間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨(dú)立.

①按乙丙甲的先后順序和按丙乙甲的先后順序哪一種可使派出人員數(shù)目的數(shù)學(xué)期望更小.

②試猜想:該團(tuán)隊(duì)以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達(dá)到最小,不需要說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠連續(xù)6天對新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

試銷價(jià)

9

11

10

12

13

14

產(chǎn)品銷量

40

32

29

35

44

(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測4月6日的產(chǎn)品銷售量

(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.

參考公式:

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù),.在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線上恰有一個(gè)點(diǎn)到曲線的距離為1,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

1)若數(shù)列的首項(xiàng)為,其中,且,,構(gòu)成公比小于0的等比數(shù)列,求的值;

2)若是公差為d(d0)的等差數(shù)列的前n項(xiàng)和,求的值;

3)若,,且數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為的右焦點(diǎn),上一點(diǎn),軸,的半徑為

1)求的方程;

2)若直線交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人承包了一塊矩形土地用來種植草莓,其中mm.現(xiàn)規(guī)劃建造如圖所示的半圓柱型塑料薄膜大棚個(gè),每個(gè)半圓柱型大棚的兩半圓形底面與側(cè)面都需蒙上塑料薄膜(接頭處忽略不計(jì)),塑料薄膜的價(jià)格為每平方米元;另外,還需在每個(gè)大棚之間留下m寬的空地用于建造排水溝與行走小路(如圖中m),這部分建設(shè)造價(jià)為每平方米.

1)當(dāng)時(shí),求蒙一個(gè)大棚所需塑料薄膜的面積;(本小題結(jié)果保留

2)試確定大棚的個(gè)數(shù),使得上述兩項(xiàng)費(fèi)用的和最低?(本小題計(jì)算中

查看答案和解析>>

同步練習(xí)冊答案