【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,左焦點,直線與橢圓交于兩點, 為橢圓上異于的點.
(1)求橢圓的方程;
(2)若,以為直徑的圓過點,求圓的標(biāo)準(zhǔn)方程;
(3)設(shè)直線與軸分別交于,證明: 為定值.
【答案】(1)(2)(3)見解析
【解析】試題分析:(1)根據(jù)離心率為,左焦點,可求出和,從而求出橢圓的方程;(2)設(shè),則,且,由,以為直徑的圓過點可得即,從而可求出圓的標(biāo)準(zhǔn)方程;(3)設(shè),則的方程為,求出兩點的縱坐標(biāo),則 ,化簡求得.
試題解析:(1)∵且
∴, .
∴橢圓方程為.
(2)設(shè),則,且.①
∵以為直徑的圓過點
∴
∴,
又∵,
∴.②
由①②解得: ,或(舍)
∴.
又∵圓的圓心為的中點,半徑為,
∴圓的標(biāo)準(zhǔn)方程為.
(3)設(shè),則的方程為,若不存在,顯然不符合條件.
令得;同理,
∴ 為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次“垃圾分類知識”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:
(1)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);
(2)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求;
(3)在(2)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:
(ⅰ)得分不低于可獲贈2次隨機話費,得分低于則只有1次;
(ⅱ)每次贈送的隨機話費和對應(yīng)概率如下:
現(xiàn)有一位市民要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列和數(shù)學(xué)期望.
附: ,
若,則, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)中央廣場由兩部分組成,一部分是邊長為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, , 將廣場分割為個區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點在半圓弧上, 分別與, 相交于點, .(道路寬度忽略不計)
(1)若經(jīng)過圓心,求點到的距離;
(2)設(shè), .
①試用表示的長度;
②當(dāng)為何值時,綠化區(qū)域面積之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方形中, , 是中點(圖1).將△沿折起,使得(圖2).在圖2中:
(1)求證:平面 平面;
(2)若, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生交通事故的次數(shù),得到如表所示的數(shù)據(jù):
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+;
(3)根據(jù)(2)所得速度與事故發(fā)生次數(shù)的規(guī)律,試說明交管部門可采取什么措施以減少事故的發(fā)生.
附:=,=-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一研究性學(xué)習(xí)小組對春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了4月1日至4月5日的每天晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差攝氏度 | 8 | 12 | 13 | 11 | 10 |
發(fā)芽數(shù)顆 | 18 | 26 | 30 | 25 | 20 |
該學(xué)習(xí)組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是4月1日與4月5日這2組數(shù)據(jù)做檢驗,請根據(jù)4月2日至4月4日這3組數(shù)據(jù)求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
參考公式和數(shù)據(jù):,;,>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解高一學(xué)生的視力健康狀況,在高一年級體檢活動中采用統(tǒng)一的標(biāo)準(zhǔn)對數(shù)視力表,按照《中國學(xué)生體質(zhì)健康監(jiān)測工作手冊》的方法對1039名學(xué)生進(jìn)行了視力檢測,判斷標(biāo)準(zhǔn)為:雙眼裸眼視力為視力正常, 為視力低下,其中為輕度, 為中度, 為重度.統(tǒng)計檢測結(jié)果后得到如圖所示的柱狀圖.
(1)求該校高一年級輕度近視患病率;
(2)根據(jù)保護視力的需要,需通知檢查結(jié)果為“重度近視”學(xué)生的家長帶孩子去醫(yī)院眼科進(jìn)一步檢查和確診,并開展相應(yīng)的矯治,則該校高一年級需通知的家長人數(shù)約為多少人?
(3)若某班級6名學(xué)生中有2人為視力正常,則從這6名學(xué)生中任選2人,恰有1人視力正常的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;
②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;
④已知是橢圓的左焦點,設(shè)動點在橢圓上,若直線的斜率大于,則直線(為原點)的斜率的取值范圍是.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com