【題目】某地高中年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見下表,并規(guī)定: 三級(jí)為合格, 級(jí)為不合格
為了了解該地高中年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ) 求及頻率分布直方圖中的值;
(Ⅱ) 根據(jù)統(tǒng)計(jì)思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選人,求至少有人成績(jī)是合格等級(jí)的概率;
(Ⅲ)上述容量為的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)研,記為所抽取的名學(xué)生中成績(jī)?yōu)?/span>等級(jí)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)根據(jù)頻率分布直方圖和樹形圖求解;(Ⅱ)至少有一人可從反面出發(fā),用間接法求解;(Ⅲ)根據(jù)分布列的定義和數(shù)學(xué)期望的計(jì)算方法求解即可.
試題解析:(Ⅰ)由題意知,樣本容量
(Ⅱ)樣本中成績(jī)是合格等級(jí)的人數(shù)為,成績(jī)是合格等級(jí)的頻率為,故從該校學(xué)生中任選人,成績(jī)是合格等級(jí)的概率為,用表示事件“從該地高中學(xué)生中任選人,至少有人成績(jī)是合格等級(jí),則”
(Ⅲ)樣本中等級(jí)的學(xué)生人數(shù)為人, 等級(jí)的學(xué)生人數(shù)為人,故隨機(jī)變量的所有取值
于是隨機(jī)變量的分布列為
所以,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”國(guó)際合作高峰論壇圓滿落幕了,相關(guān)話題在網(wǎng)絡(luò)上引起了網(wǎng)友們的高度關(guān)注,為此,21財(cái)經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報(bào)告,在全國(guó)抽取的70千萬(wàn)網(wǎng)民中(其中為高學(xué)歷)有20千萬(wàn)人對(duì)此關(guān)注(其中為高學(xué)歷).
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表;
(2)根據(jù)列聯(lián)表,用獨(dú)立性檢驗(yàn)的方法分析,能否有的把握認(rèn)為“一帶一路”的關(guān)注度與學(xué)歷有關(guān)系?
高學(xué)歷(千萬(wàn)人) | 不是高學(xué)歷(千萬(wàn)人) | 合計(jì) | |
關(guān)注 | |||
不關(guān)注 | |||
合計(jì) |
參考公式: 統(tǒng)計(jì)量的表達(dá)式是,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒(méi)有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng),且時(shí)證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)使得不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表,又知的導(dǎo)函數(shù)的圖象如下圖所示:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
則下列關(guān)于的命題:
①函數(shù)的極大值點(diǎn)為2;
②函數(shù)在上是減函數(shù);
③如果當(dāng)時(shí), 的最大值是2,那么的最大值為4;
④當(dāng),函數(shù)有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (為實(shí)常數(shù)).
(1)若, ,求的單調(diào)區(qū)間;
(2)若,且,求函數(shù)在上的最小值及相應(yīng)的值;
(3)設(shè),若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com