【題目】如圖,三棱柱中,側(cè)面 側(cè)面1, , .
(Ⅰ)求證: ;
(Ⅱ)求三棱錐的側(cè)面積.
【答案】(1)見解析;(2).
【解析】試題分析:(Ⅰ)取中點,連結(jié), ,推導出, , ,從而平面,由此能證明結(jié)論;(Ⅱ)在平行四邊形中,過作于點,過作于點,則為矩形,推導出, ,由此能求出三棱錐的側(cè)面積.
試題解析:(Ⅰ)取中點,連結(jié), ,
∵, ,∴為正三角形,
∴, ,
又側(cè)面側(cè)面,面面, 面,
∴平面,
又平面,∴,
在中,∵, , ,
∴,解得,
∴,∴,
又, 平面, 平面,
∴平面,
∵平面,∴.
(Ⅱ)依題意, ,
在平行四邊形中,過作于點,
過作于點,則為矩形,∴,
由(1)知平面, 平面,
∴,
∵, , 平面, 平面,
∴平面,∵平面,
∴,
∵,
在中, , ,
∴,
∴,
∴三棱錐的側(cè)面積.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五面體中,,底面是正三角形,,四邊形是矩形,二面角為直二面角.
(1)在上運動,當在何處時,有平面,并說明理由;
(2)當平面時,求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠。其中有一題:今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何? 譯文如下:要測量海島上一座山峰的高度,立兩根高均為丈的標桿和,前后標桿相距步,使后標桿桿腳與前標桿桿腳與山峰腳在同一直線上,從前標桿桿腳退行步到,人眼著地觀測到島峰,、、三點共線,從后標桿桿腳退行步到,人眼著地觀測到島峰,、、三點也共線,問島峰的高度 步. (古制:步=尺,里=丈=尺=步)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為短軸頂點在圓上.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點,若斜率為1的直線與橢圓相交于兩點,試探究以為底邊的等腰三角形是否存在?若存在,求出直線的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為加強學生的交通安全教育,對學校旁邊,兩個路口進行了8天的檢測調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個數(shù)據(jù),求所抽取的兩個數(shù)據(jù)中至少有一個不小于40的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.
(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com