【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若點(diǎn)與點(diǎn)分別為曲線動(dòng)點(diǎn),求的最小值,并求此時(shí)的點(diǎn)坐標(biāo).
【答案】(1)的普通方程為,的普通方程為(2),
【解析】
(1)利用消參法,消去參數(shù),可把曲線的參數(shù)方程化為普通方程;通過極坐標(biāo)和直角坐標(biāo)的互化公式,可將曲線的極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)點(diǎn)是曲線上動(dòng)點(diǎn),可先求出的參數(shù)方程,則可表示出點(diǎn)坐標(biāo),運(yùn)用點(diǎn)到直線距離公式求到直線的距離,再運(yùn)用輔助角公式化簡(jiǎn)即可得出答案.
(1)曲線的普通方程為
曲線的極坐標(biāo)方程為,即
曲線的普通方程為,即
(2)設(shè)點(diǎn)
則點(diǎn)到直線的距離為
當(dāng),即時(shí)取最小值,
此時(shí)點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測(cè)試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績(jī)落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再?gòu)闹羞x出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的兩個(gè)焦點(diǎn)為、,P為該雙曲線上一點(diǎn),滿足,P到坐標(biāo)原點(diǎn)O的距離為d,且,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為梯形,AB//CD,∠BAD=60°,CD=1,AD=2,AB=4,點(diǎn)G在線段AB上,AG=3GB,AA1=1
(1)證明:D1G/平面BB1C1C,
(2)求二面角A1-D1G-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線作平面交棱于點(diǎn)E,交棱于點(diǎn)F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號(hào)為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的零點(diǎn),以及曲線在處的切線方程;
(2)設(shè)方程()有兩個(gè)實(shí)數(shù)根,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求異面直線PB與CD所成角的余弦值;
(2)求平面PAD與平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高爾頓板是英國(guó)生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)用來研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯(cuò)開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ溃懊鎿跤幸粔K玻璃,讓一個(gè)小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號(hào)為1,2…,7的球槽內(nèi).例如小球要掉入3號(hào)球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個(gè)空隙處,再以的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個(gè)空隙處,再以的概率向右滾下.
(1)若進(jìn)行一次高爾頓板試驗(yàn),求小球落入第7層第6個(gè)空隙處的概率;
(2)小明同學(xué)在研究了高爾頓板后,利用該圖中的高爾頓板來到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎(jiǎng)”活動(dòng),8元可以玩一次高爾頓板游戲,小球掉入X號(hào)球槽得到的獎(jiǎng)金為元,其中.
(i)求X的分布列:
(ii)高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲,你覺得小明同學(xué)能盈利嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com