【題目】拋物線的焦點為F,P為其上一動點,設(shè)直線l與拋物線C相交于A,B兩點,點下列結(jié)論正確的是( )
A.|PM| +|PF|的最小值為3
B.拋物線C上的動點到點的距離最小值為3
C.存在直線l,使得A,B兩點關(guān)于對稱
D.若過A、B的拋物線的兩條切線交準線于點T,則A、B兩點的縱坐標之和最小值為2
科目:高中數(shù)學 來源: 題型:
【題目】某學校高中三個年級共有4000人,為了了解各年級學周末在家的學習情況,現(xiàn)通過分層抽樣的方法獲得相關(guān)數(shù)據(jù)如下(單位:小時),其中高一學生周末的平均學習時間記為.
高一:14 15 15.5 16.5 17 17 18 19
高二:15 16 16 16 17 17 18.5
高三:16 17 18 21.5 24
(1)求每個年級的學生人數(shù);
(2)從高三被抽查的同學中隨機抽取2人,求2人學習時間均超過的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)從某學校中選出名學生,統(tǒng)計了名學生一周的戶外運動時間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計表格.
(1)寫出的值,并估計該學校人均每周的戶外運動時間(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)假設(shè),則戶外運動時長為的學生中,男生人數(shù)比女生人數(shù)多的概率.
(3)若,完成下列列聯(lián)表,并回答能否有90%的把握認為“每周至少運動130分鐘與性別有關(guān)”?
每周戶外運動時間不少于130分鐘 | 每周戶外運動時間少于130分鐘 | 合計 | |
男 | |||
女 | |||
合計 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點,兩點分別是橢圓的上,下頂點,是等腰直角三角形,延長交橢圓于點,且的周長為.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上異于的動點,直線與直分別相交于兩點,點,求證:的外接圓恒過原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C :與圓相交于M,N,P,Q四點,四邊形MNPQ為正方形,△PF1F2的周長為
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C相交于A、B兩點若直線AD與直線BD的斜率之積為,證明:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,,對于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.
(1)判斷函數(shù),是否是“函數(shù)”;
(2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;
(3)若函數(shù)是“函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()的單調(diào)遞減區(qū)間為.
(I)求a的值;
(II)證明:當時,;
(III)若存在,使得當時,恒有,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com