【題目】某知名品牌汽車深受消費(fèi)者喜愛,但價(jià)格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對(duì)近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤(rùn)分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購(gòu)買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.

(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),求X的分布列與期望.

【答案】
(1)

解:由題意得:

P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,

∴甲乙兩人采用不同分期付款方式的概率:

p=1﹣[P(A)P(A)+P(B)P(B)+P(C)P(C)]=0.635


(2)

解:記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),

則X的可能取值為2,3,4,5,6,

P(X=2)=P(A)P(A)=0.35×0.35=0.1225,

P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,

P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,

P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,

P(X=6)=P(C)P(C)=0.2×0.2=0.04.

∴X的分布列為:

X

2

3

4

5

6

P

0.1225

0.315

0.3425

0.18

0.04

E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7


【解析】(1)由題意得:P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,利用對(duì)立事件概率計(jì)算公式能求出甲乙兩人采用不同分期付款方式的概率.(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),則X的可能取值為2,3,4,5,6,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不相同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則概率P(A|B)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ω>0,函數(shù)y=2cos(ωx+ )﹣1的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.

1)求的值;

2)若函數(shù)內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

3)設(shè),若不等式上恒成立,求滿足條件的最小整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= 與g(x)=a2lnx+b有公共點(diǎn),且在公共點(diǎn)處的切線方程相同,則實(shí)數(shù)b的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調(diào)性;(2)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.
(1)(I)討論f(x) 的單調(diào)性;
(2)(II)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·四川)如圖,橢圓E:的離心率是,點(diǎn)P(0,1)在短軸CD上, 且.

(1)求橢圓E的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)P的動(dòng)直線與橢圓交于A、B兩點(diǎn).是否存在常數(shù)λ , 使得為定值?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案