【題目】一商場對5年來春節(jié)期間服裝類商品的優(yōu)惠金額(單位:萬元)與銷售額(單位:萬元)之間的關(guān)系進(jìn)行分析研究并做了記錄,得到如下表格.
日期 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖,并判斷服裝類商品的優(yōu)惠金額與銷售額是正相關(guān)還是負(fù)相關(guān);
(2)根據(jù)表中提供的數(shù)據(jù),求出與的回歸方程;
(3)若2019年春節(jié)期間商場預(yù)定的服裝類商品的優(yōu)惠金額為10萬元,估計該商場服裝類商品的銷售額.
參考公式:
參考數(shù)據(jù):
【答案】(1)散點圖見解析,正相關(guān);(2);(3)萬元.
【解析】
(1)根據(jù)題中數(shù)據(jù),描點,即可得出散點圖;從而可得相關(guān)性;
(2)根據(jù)題中數(shù)據(jù),求出,,根據(jù)最小二乘法求出與,即可得出回歸直線方程;
(3)根據(jù)(2)的結(jié)果,將代入,即可求出結(jié)果.
(1)散點圖如圖所示.
由圖可知,服裝類商品的優(yōu)惠金額與銷售額是正相關(guān).
(2),,
,
,
所以線性回歸方程為.
(3)由(2)可知,當(dāng)時,,即服裝類商品的優(yōu)惠金額為10萬元時,該商場服裝類商品的銷售額約為萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)如圖,在邊長為的菱形中,,點,分別是邊,的中點,.沿將△翻折到△,連接,得到如圖的五棱錐,且.
(1)求證:平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有下面四個命題:①底面是正多邊形,其余各面都是等腰三角形的棱錐是正棱錐.②底面是正三角形,相鄰兩側(cè)面所成二面角都相等的三棱錐是正三棱錐.③有兩個面互相平行,其余四個面都是全等的等腰梯形的六面體是正四棱臺.④有兩個面互相平行,其余各個面是平行四邊形的多面體是棱柱.其中,正確的命題的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,,其中,則稱為的“生成數(shù)列”.
(1)若數(shù)列的“生成數(shù)列”是,求;
(2)若為偶數(shù),且的“生成數(shù)列”是,證明:的“生成數(shù)列”是;
(3)若為奇數(shù),且的“生成數(shù)列”是,的“生成數(shù)列”是,…,依次將數(shù)列,,,…的第項取出,構(gòu)成數(shù)列.
探究:數(shù)列是否為等比數(shù)列,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)存在兩個極值點,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:,若橢圓上一點與其中心及長軸一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,若直線l與橢圓相交于AB且AB是圓的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,若實數(shù)a滿足f(log2|a﹣1|)>f(﹣2),則a的取值范圍是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com