【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.

(1)求函數(shù)f(x)g(x)的表達(dá)式;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;

(3)若方程上恰有一個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.

【答案】123

【解析】

1)根據(jù)函數(shù)的奇偶性列出,解方程組即可求解.

2)由(1)令利用換元法將不等式轉(zhuǎn)化為,再采用分離參數(shù)法轉(zhuǎn)化為,求出的最小值即可求解.

3)根據(jù)題意令,將方程轉(zhuǎn)化為(1,2)上恰有一個(gè)實(shí)根,根據(jù)一元二次方程根的分布即可求解.

解:(1,①.

,②

聯(lián)立①②解得.

2對(duì)恒成立,

對(duì)恒成立,

為減函數(shù),,

,即恒成立.

上單調(diào)遞減,,

a的取值范圍為

3恰有一個(gè)實(shí)根,

上恰有一個(gè)實(shí)根,

,(1,2)上恰有一個(gè)實(shí)根,

當(dāng)時(shí),得,由可知無(wú)解;

當(dāng)時(shí),又則有

解得,綜上m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測(cè)試.測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2.

表1

停車距離(米)

頻數(shù)

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

回答以下問(wèn)題.

(1)由表1估計(jì)駕駛員無(wú)酒狀態(tài)下停車距離的平均數(shù);

(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;

(3)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(1)中無(wú)酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(2)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?(精確到個(gè)位)

(附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;

②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為;

④函數(shù)對(duì)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市乘坐出租車的收費(fèi)辦法如下:

不超過(guò)4千米的里程收費(fèi)12元;超過(guò)4千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi);當(dāng)車程超過(guò)4千米時(shí),另收燃油附加費(fèi)1元,相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費(fèi)用,用表示不大于的最大整數(shù),則圖中處應(yīng)填(

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案