【題目】已知函數(shù)是定義在上的奇函數(shù),當時,,給出下列命題:
①當時, ②函數(shù)有3個零點
③的解集為 ④,都有
其中正確命題的個數(shù)是( )
A. 4B. 3C. 2D. 1
【答案】A
【解析】
對于①:根據(jù)奇函數(shù)的性質(zhì)即可求解;
對于②:先求出當時,函數(shù)的零點,利用奇函數(shù)的性質(zhì),就可以求出當時,函數(shù)的零點,由于函數(shù)是定義在上的奇函數(shù),所以有。
對于③:分類討論,當時,求出的解集;當時,求出的解集。
對于④:利用導(dǎo)數(shù),求出函數(shù)的值域,就可以判斷是否正確。
對于①:當時,有,由奇函數(shù)定義可知:,所以
本命題正確;
對于②:當時, ,解得,即,根據(jù)奇函數(shù)的性質(zhì)可知,又因為定義域是,所以,因此函數(shù)有3個零點,本命題正確;
對于③:當時,,即,解得,;
當時,通過①的分析,可知,當時,即,解得,,本命題正確;
對于④:當時,,,當時,,函數(shù)單調(diào)遞增;當 ,函數(shù)單調(diào)遞減,
的極大值為,
當時,,根據(jù)③可知,當時,,當時,,
所以當時,,由于是奇函數(shù)時,,
而,所以當時,,即恒成立,本命題正確。
綜上所述,有4個命題是正確的,因此本題選A。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】再直角坐標系中,定義兩點,間的“直角距離”為,現(xiàn)有下列命題:
①若,是軸上兩點,則
②已知,,則為定值
③原點到直線上任一點的直角距離的最小值為
④設(shè)且,,若點是在過與的直線上,且點到點與的“直角距離”之和等于,那么滿足條件的點只有個.
其中的真命題是____________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點分別為過的直線交橢圓于兩點,且
(1)若,求橢圓的標準方程
(2)若求橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個平面,使直線b與平面交于一個定點,且直線平面.
則所有正確結(jié)論的序號為( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A、B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線與圓相交于兩點,直線與橢圓C交于另一點R;求面積取最大值時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù),),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)若直線被圓截得的弦長為時,求的值.
(2)直線的參數(shù)方程為(為參數(shù)),若,垂足為,求點的極坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓的方程為:,為圓上任意一點,過作軸的垂線,垂足為,點在上,且.
(1)求點的軌跡的方程;
(2)過點的直線與曲線交于、兩點,點的坐標為,的面積為,求的最大值,及直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,與都為等邊三角形,且側(cè)面與底面互相垂直,為的中點,點在線段上,且,為棱上一點.
(1)試確定點的位置,使得平面;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com