【題目】已知二次函數,關于的不等式的解集為,其中.
(1)求的值;
(2)令,若函數存在極值點,求實數的取值范圍,并求出極值點.
【答案】(I)a=﹣2;(II)解題過程如解析所示
【解析】試題分析:(1)令f(b)-(2b-1)b+b2=1即可解出a;(2)求出φ′(x),令φ′(x)=0,討論b的符號得出兩根與區(qū)間(0,1)的關系,從而得出φ(x)的單調性,得出極值的情形.
試題解析:(I)∵f(x)﹣(2b﹣1)x+b2<1的解集為(b,b+1),
即x2+(a﹣2b+1)x+b2+b<0的解集為(b,b+1),
∴方程x2+(a﹣2b+1)x+b2+b=0的解為x1=b,x2=b+1,
∴b+(b+1)=﹣(a﹣2b+1),解得a=﹣2.
(II)φ(x)得定義域為(1,+∞).
由(I)知f(x)=x2﹣2x+b+1,∴g(x)==x﹣1+,
∴φ′(x)=1﹣﹣=,
∵函數φ(x)存在極值點,∴φ′(x)=0有解,
∴方程x2﹣(2+k)x+k﹣b+1=0有兩個不同的實數根,且在(1,+∞)上至少有一根,
∴△=(2+k)2﹣4(k﹣b+1)=k2+4b>0.
解方程x2﹣(2+k)x+k﹣b+1=0得x1=,x2=
(1)當b>0時,x1<1,x2>1,
∴當x∈(1,)時,φ′(x)<0,當x∈(,+∞)時,φ′(x)>0,
∴φ(x)在(1,)上單調遞減,在(,+∞)上單調遞增,
∴φ(x)極小值點為
(2)當b<0時,由△=k2+4b>0得k<﹣2,或k>2,
若k<﹣2,則x1<1,x2<1,
∴當x>1時,φ′(x)>0,∴φ(x)在(1,+∞)上單調遞增,不符合題意;
若k>2,則x1>1,x2>1,
∴φ(x)在(1,)上單調遞增,在(,)上單調遞減,在(,+∞)單調遞增,
∴φ(x)的極大值點為,極小值點為.
綜上,當b>0時,k取任意實數,函數φ(x)極小值點為;
當b<0時,k>2,函數φ(x)極小值點為,極大值點為
科目:高中數學 來源: 題型:
【題目】如圖,直線y= x與拋物線y= x2﹣4交于A,B兩點,線段AB的垂直平分線與直線y=﹣5交于Q點,當P為拋物線上位于線段AB下方(含A,B)的動點時,則△OPQ面積的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等比數列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為( )
A.π2
B.2π
C.π
D.4π2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(1)用定義證明函數f(x)在(﹣∞,+∞)上為減函數;
(2)若x∈[1,2],求函數f(x)的值域;
(3)若g(x)= ,且當x∈[1,2]時g(x)≥0恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為R,f(﹣2)=2,對任意x∈R,f′(x)>2,則f(x)>2x+6的解集為( )
A.(﹣2,2)
B.(﹣∞,﹣2)
C.(﹣2,+∞)
D.(﹣∞,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1的側面ACC1A1是正方形,AC=BC,點O是側面ACC1A1的中心,∠ACB= ,M在棱BC上,且MC=2BM=2.
(1)證明BC⊥AC1;
(2)求OM的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com