【題目】已知函數(shù),各項均不相等的數(shù)列滿足.令.給出下列三個命題:
(1)存在不少于3項的數(shù)列,使得;
(2)若數(shù)列的通項公式為,則對恒成立;
(3)若數(shù)列是等差數(shù)列,則對恒成立.
其中真命題的序號是( )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
【答案】D
【解析】
由題意得是奇函數(shù),只需考查時,的奇偶性,而和都在上是增函數(shù),所以在上是增函數(shù),即時,
對于(1),取即可判斷;
對于(2),運用等比數(shù)列的求和公式和三角函數(shù)的性質(zhì),即可判斷;
對于(3),運用等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì),以及不等式的性質(zhì),結(jié)合函數(shù)的單調(diào)性,即可判斷.
由題意得,所以是奇函數(shù),只需考查時,的奇偶性,而和都在上是增函數(shù),所以在上是增函數(shù);
所以在上是增函數(shù).設(shè),
若,則 即,
若,則 即,
∴時,
對于(1),取則因此(1)正確;
對于(2),∵,∴ ,
又時,
,
令,則,
所以,
因為,所以,所以,
所以,即,
所以,所以,
又因為,
所以,即對于恒成立,故(2)正確;
對于(3),因為數(shù)列是等差數(shù)列,若 ,
若則,可得 相加即可得到,所以
若則,可得
相加即可得到,所以
故(3)正確.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機抽取了名學(xué)生,對是否收看籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
會收看 | 不會收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根據(jù)上表說明,能否有的把握認為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看籃球世界杯賽事的學(xué)生中,采用按性別分層抽樣的方法選取人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.
(i)求男、女學(xué)生各選取多少人;
(ii)若從這人中隨機選取人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到名男生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%.(即:設(shè)獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:當(dāng)x∈[25,1600]時,①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;
(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以O為圓心半徑為20米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形OAB區(qū)域,其中兩個端點A,B分別在圓周上;觀眾席為等腰梯形ABQP內(nèi)且在圓O外的區(qū)域,其中,,且AB,PQ在點O的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺中心O處的距離都不超過60米(即要求).設(shè),.
(1)當(dāng)時求舞臺表演區(qū)域的面積;
(2)對于任意α,上述設(shè)計方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(且)
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)當(dāng)時,直接寫出函數(shù)的單調(diào)區(qū)間(不需證明)
(3)若,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)性;
(2)若對定義域內(nèi)任意的,都恒成立,求a的取值范圍;
(3)記,若在區(qū)間內(nèi)有2個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com