【題目】△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

【答案】12

【解析】

試題分析:(1)根據(jù)二倍角公式,三角形內(nèi)角和,所以,整理為關(guān)于的二次方程,解得角的大;(2)根據(jù)三角形的面積公式和上一問(wèn)角,代入后解得邊,這樣就知道,然后根據(jù)余弦定理再求,最后根據(jù)證得定理分別求得.

試題解析:(1)由cos 2A3cos(BC)1,

2cos2A3cos A20,

(2cos A1)(cos A2)0,

解得cos Acos A=-2(舍去)

因?yàn)?/span>0<A<π,所以A.

2)由Sbcsin Abc×bc5,得bc20,又b5,知c4.

由余弦定理得a2b2c22bccos A25162021,故a.

從而由正弦定理得sin B sin Csin A×sin Asin2A×.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正的頂點(diǎn)在平面內(nèi),頂點(diǎn)在平面外的同一側(cè),點(diǎn),分別為,在平面內(nèi)的投影,設(shè),直線與平面所成的角為.若是以角為直角的直角三角形,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形ABCD如圖1中,AD= ,AB=2,E為AB中點(diǎn),將△ADE沿DE折起到△PDE,所得四棱錐P﹣BCDE如圖2所示.

(Ⅰ)若點(diǎn)M為PC中點(diǎn),求證:BM∥平面PDE;
(Ⅱ)當(dāng)平面PDE⊥平面BCDE時(shí),求三棱錐E﹣PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某海面上有、、三個(gè)小島(面積大小忽略不計(jì)),島在島的北偏東方向處,島在島的正東方向.

1)以為坐標(biāo)原點(diǎn),的正東方向?yàn)?/span>軸正方向,為單位長(zhǎng)度,建立平面直角坐標(biāo)系,寫出、的坐標(biāo),并求、兩島之間的距離;

2)已知在經(jīng)過(guò)、三個(gè)點(diǎn)的圓形區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船在島的南偏西方向距處,正沿著北偏東行駛,若不改變方向,試問(wèn)該船有沒(méi)有觸礁的危險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,CD=2,△ABC是邊長(zhǎng)為3的等邊三角形.

(1)求AD

(2)求sinDAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足所求式?若能,請(qǐng)直接寫出該代數(shù)式;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案