如圖,過(guò)拋物線(xiàn)>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB。

⑴設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
⑵求弦AB中點(diǎn)M的軌跡方程。
⑴A(,),B(,)。⑵ ,即為M點(diǎn)軌跡的普通方程。

試題分析:⑴.∵依題意可知直線(xiàn)OA的斜率存在且不為0
∴設(shè)直線(xiàn)OA的方程為)∴聯(lián)立方程 
解得   ;以代上式中的,解方程組
解得   ∴A(),B()。 6分
⑵.設(shè)AB中點(diǎn)M(x,y),則由中點(diǎn)坐標(biāo)公式,得
消去參數(shù)k,得 ,即為M點(diǎn)軌跡的普通方程。   12
點(diǎn)評(píng):中檔題,研究直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,往往通過(guò)建立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程!皡(shù)法”是求曲線(xiàn)方程的常見(jiàn)方法,通過(guò)引入適當(dāng)?shù)摹爸虚g變量”,將動(dòng)點(diǎn)的坐標(biāo)相互聯(lián)系起來(lái)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓和圓,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線(xiàn),切點(diǎn)分別為A,B.

(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線(xiàn)AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:()經(jīng)過(guò)兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿(mǎn)足.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是離心率為的橢圓上的一點(diǎn),斜率為的直線(xiàn)交橢圓、兩點(diǎn),且、、三點(diǎn)不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過(guò)點(diǎn)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線(xiàn)l與橢圓C相交于,兩點(diǎn),連接MA,MB并延長(zhǎng)交直線(xiàn)x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、分別為橢圓的上、下焦點(diǎn),其中也是拋物線(xiàn)的焦點(diǎn),點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓,過(guò)點(diǎn)的動(dòng)直線(xiàn)與圓相交于不同的兩點(diǎn),在線(xiàn)段取一點(diǎn),滿(mǎn)足:,)。
求證:點(diǎn)總在某定直線(xiàn)上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn),且與直線(xiàn)相切.
(1)求橢圓及動(dòng)圓圓心軌跡的方程;
(2) 在曲線(xiàn)上有兩點(diǎn),橢圓上有兩點(diǎn),滿(mǎn)足共線(xiàn),共線(xiàn),且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1、F2為雙曲線(xiàn))的兩個(gè)焦點(diǎn),若F1、F2、P(0,2)是正三角形的三個(gè)頂點(diǎn),則雙曲線(xiàn)離心率是(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的短軸長(zhǎng)等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)且斜率為(>0)的直線(xiàn)C交于兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),證明:三點(diǎn)共線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案