【題目】為了解某校今年高三畢業(yè)班報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了如圖所示的頻率分布直方圖.已知圖中從左到右的前三組的頻率之比為1:2:3,其中體重在的有5人.

(1)求該校報考飛行員的總?cè)藬?shù);

(2)從該校報考飛行員的體重在學生中任選3人,設(shè)表示體重超過70的學生人數(shù),求的分布列和數(shù)學期望.

【答案】(1)40;(2)見解析.

【解析】

(Ⅰ)設(shè)圖中從左到右的前3個小組的頻率分別為,,,利用頻率之和為1求出,由此能求出該校報考飛行員的總?cè)藬?shù)。

2)確定這40人中體重在區(qū)間的學生人數(shù),體重超過70的人數(shù),利用超幾何分布求出分布列和數(shù)學期望。

(1)設(shè)該校報考飛行員的人數(shù)為, 前三個小組的頻率分別為,,,

,解得:,即第1組的頻率為.

,故

即該校報考飛行員的總?cè)藬?shù)是40人.

(2)由(1)知:這40人中體重在區(qū)間的學生有人,

體重超過70的有

現(xiàn)從這10人中任選3人,則

,

,

∴隨機變量的分布列為

X

0

1

2

3

P

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程是

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

(Ⅱ)設(shè)直線與曲線相交于兩點,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是甲、乙、丙三個企業(yè)的產(chǎn)品成本(單位:萬元)及其構(gòu)成比例,則下列判斷正確的是( 。

A. 乙企業(yè)支付的工資所占成本的比重在三個企業(yè)中最大

B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費用開支所占成本的比重也最大

C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費用支出降到了最低點

D. 乙企業(yè)用于工資和其他費用支出額比甲丙都高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|2x-1|+|2x-2|x+3的解集是A

(Ⅰ)求集合A;

(Ⅱ)設(shè)x,yA,對任意aR,求證:xy||x+a|-|y+a||)<x2+y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),把曲線橫坐標縮短為原來的,縱坐標縮短為原來的一半,得到曲線,直線的普通方程是,以坐標原點為極點,軸正半軸為極軸建立極坐標系;

(1)求直線的極坐標方程和曲線的普通方程;

(2)記射線交于點,與交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)對任意的成立,求實數(shù)的取值范圍;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩種理財產(chǎn)品,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

注:

(1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;

(2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求證:CBPD;

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點關(guān)于直線對稱,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案