【題目】若不等式x2﹣ax﹣b<0的解集是{x|2<x<3},求不等式bx2﹣ax﹣1>0的解集.
【答案】解:∵不等式x2﹣ax﹣b<0的解集是{x|2<x<3},∴2,3是一元二次方程x2﹣ax﹣b=0的實(shí)數(shù)根,
∴ ,解得
∴不等式bx2﹣ax﹣1>0可化為﹣6x2﹣5x﹣1>0,
即6x2+5x+1<0,
∵方程6x2+5x+1=0的解為x=﹣ 或x=﹣ ,
∴不等式bx2﹣ax﹣1>0的解集為{x|﹣ <x<﹣ }
【解析】由不等式x2﹣ax﹣b<0的解集是{x|2<x<3},可得2,3是一元二次方程x2﹣ax﹣b=0的實(shí)數(shù)根,利用根與系數(shù)的關(guān)系可得a,b,進(jìn)而解得.
【考點(diǎn)精析】利用解一元二次不等式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于( )
A.720
B.360
C.240
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點(diǎn)為( ),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和最低點(diǎn)分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計(jì) |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X.求X的數(shù)學(xué)期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, ,M在線段上,且.
(Ⅰ)證明: 平面;
(Ⅱ)在線段AD上確定一點(diǎn)F,使得平面平面PAB,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)m是直線l: x﹣y+3=0與x軸的交點(diǎn),將直線l繞點(diǎn)m旋轉(zhuǎn)30°,求所得到的直線l′的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓C的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓C的方程;
(2)是否存在過點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為, 是橢圓上的一個(gè)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為, ()是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com