【題目】在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求A,B的極坐標;
(2)設M為曲線C上的一個動點, (λ>0),| || |=2,求動點Q的極坐標方程.

【答案】
(1)解:由曲線C的極坐標方程為ρcos(θ﹣ )=1,展開為 + ρsinθ=1,可得直線C的直角坐標方程為 x+ y=1,即x+ y=2.

當θ=0時,ρ=2,∴A(2,0);

當θ= 時,ρ= ,∴B


(2)解:由條件可設Q(ρ,θ), ,

由條件 為所求Q的極坐標方程


【解析】(1)由曲線C的極坐標方程為ρcos(θ﹣ )=1,展開為 + ρsinθ=1,利用互化公式可得直線C的直角坐標方程,分別取θ=0,θ= 時,計算出ρ,即可得出直角坐標.(2)由條件可設Q(ρ,θ) ,由已知可得ρρ1=2, =2,聯(lián)立解出ρj即可得出方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)當, 時,求的單調減區(qū)間;

(2)時,函數(shù),若存在,使得恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)當時,求的單調區(qū)間;

(2)證明:對任意的,在區(qū)間內均存在零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時間代號t

1

2

3

4

5

儲蓄存款y(千億元)

5

6

7

8

10


(1)求y關于t的回歸方程
(2)用所求回歸方程預測該地區(qū)2015年(t=6)的人民幣儲蓄存款.
附:回歸方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調區(qū)間和極值;
(2)若關于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點, 的四個頂點構成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求函數(shù)f(x)的定義域和值域;
(2)設F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案