【題目】某校高二年組組了一次專題培訓(xùn),從參加考試的學(xué)生中出名學(xué)生,將其成(均為整數(shù))分成為,,,,分為組,得到如圖所示的率分布直方圖:
(1)求分?jǐn)?shù)值不低于分的人數(shù);
(2)計這次考試的平均數(shù)和中位數(shù)(保留兩位小數(shù));
(3)已知分?jǐn)?shù)在內(nèi)的男性與女性的比為,為提高他們的成績,現(xiàn)從分?jǐn)?shù)在的人中隨機(jī)抽取人進(jìn)行補(bǔ)課,求這人中只有一位男性的概率.
【答案】(1)73人;(2)平均分:76.2,中位數(shù):70.66;(3)
【解析】
(1)由題得分?jǐn)?shù)值不低于分的人數(shù)為,計算即得解;(2)
利用頻率分布直方圖中平均數(shù)和中位數(shù)公式求這次考試的平均數(shù)和中位數(shù);(3)利用古典概型的概率公式求這2人中只有一位男性的概率.
(1)由頻率分布直方圖可知滿意度分?jǐn)?shù)不低于分的人數(shù)為:
人,
所以分?jǐn)?shù)不低于分的人數(shù)為人.
(2)平均分:.
中位數(shù):,.
(3)的樣本內(nèi)共有學(xué)生人,即有名男性,名女性,
設(shè)三名男性分別表示為,,,四名女性分別表示為,,,,
則從名學(xué)生中隨機(jī)抽取名的所有可能結(jié)果為:,,,,,,,,,,,,,,,,,,,,,共種.
設(shè)事件為“抽取人中只有一位男性”,則中所含的結(jié)果為:,,,,,,,,,,,共種.
所以事件發(fā)生的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是異面直線a、b的公垂線,長度為2,點C、D分別在直線a和b上,且CD長為4,過線段AB的中點M作平面α,使得AB⊥平面α,線段CD與平面α交點為N.
(1)求異面直線AB和CD所成的角的大;
(2)求證:直線a∥α且CN=DN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與平面,,下列命題:
①若平行內(nèi)的一條直線,則;②若垂直內(nèi)的兩條直線,則;③若且,則;④若mα,lβ且,則;⑤若,且,則;⑥若,,,則;其中正確的命題為______________(填寫所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得+x0+1<0”,則p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式組表示的平面區(qū)域為,若函數(shù)的圖象上存在區(qū)域上的點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面平面,.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在點,使得平面?若存在, 求的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點在直線上,過點作圓的切線,切點為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點的坐標(biāo);
(3)若點的坐標(biāo)為,過點作直線與圓交于兩點,當(dāng)時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com