【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.
⑴求橢圓的標(biāo)準方程;
⑵若,求的值;
⑶設(shè)直線, 的斜率分別為, ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率,過點、分別作兩平行直線、, 與橢圓相交于、兩點, 與橢圓相交于、兩點,且當(dāng)直線過右焦點和上頂點時,四邊形的面積為.
(1)求橢圓的標(biāo)準方程;
(2)若四邊形是菱形,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,其中i為虛數(shù)單位,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:
(1)位于虛軸上;
(2)位于一、三象限;
(3)位于以原點為圓心,以4為半徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線經(jīng)過拋物線的焦點,且垂直于拋物線的對稱軸,與拋物線兩交點間的距離為4.
(1)求拋物線的方程;
(2)已知,過的直線與拋物線相交于兩點,設(shè)直線與的斜率分別為和,求證:為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ: 的右焦點為F,過點F且斜率為k的直線與橢圓Γ交于A(x1, y1)、B(x2, y2)兩點(點A在x軸上方),點A關(guān)于坐標(biāo)原點的對稱點為P,直線PA、PB分別交直線l:x=4于M、N兩點,記M、N兩點的縱坐標(biāo)分別為yM、yN.
(1) 求直線PB的斜率(用k表示);
(2) 求點M、N的縱坐標(biāo)yM、yN (用x1, y1表示) ,并判斷yM yN是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學(xué)、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進行調(diào)查.
(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).
(2)該校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
(i)請將列聯(lián)表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關(guān)系.
(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再從這6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com