【題目】若函數(shù).
(1)討論的單調(diào)性;
(2)若在上恒成立,求實數(shù)的取值范圍;
(3)求證:對任意的正整數(shù)都有,.
【答案】(1)上單調(diào)遞減,在上單調(diào)遞增; (2);(3)證明見解析
【解析】
(1)求導后,令可確定其在范圍內(nèi)的根,進而得到導函數(shù)的正負,從而得到原函數(shù)的單調(diào)性;
(2)將恒成立的不等式轉化為,令,則只需,利用導數(shù)可求得,進而得到結果;
(3)取,結合(2)的結論可得,根據(jù)可裂項相加證得結論.
(1)由題意得:定義域為,,
設,,
有兩個根,設為,且,
,,,則,
當時,;當時,,
在上單調(diào)遞減,在上單調(diào)遞增.
(2),,又,,
設,,
令,則,在上單調(diào)遞減,
又,則當時,;當時,,
在上單調(diào)遞增,在上單調(diào)遞減,,
恒成立即,即的取值范圍為.
(3)取,由(2)知:,,
當時,,,;
取,得;取,得;……;取,得;
將這個式子相加得:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當時,求證:;
(Ⅲ)設,記在區(qū)間上的最大值為M(a),當M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內(nèi)作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出的值分別為( )
(參考數(shù)據(jù):)
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①命題“若,則”的逆否命題;
②“,使得”的否定是:“,均有”;
③命題“”是“”的充分不必要條件;
④:,:,且為真命題.
其中真命題的序號是________.(填寫所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某芯片所獲訂單(億件)與生產(chǎn)精度(納米)線性相關,該芯片的合格率與生產(chǎn)精度(納米)也線性相關,并由下表中的5組數(shù)據(jù)得到,與滿足線性回歸方程為:.
精度(納米) | 16 | 14 | 10 | 7 | 3 |
訂單(億件) | 7 | 9 | 12 | 14.5 | 17.5 |
合格率 | 0.99 | 0.98 | 0.95 | 0.93 |
(1)求變量與的線性回歸方程,并預測生產(chǎn)精度為1納米時該芯片的訂單(億件);
(2)若某工廠生產(chǎn)該芯片的精度為3納米時,每件產(chǎn)品的合格率為,且各件產(chǎn)品是否合格相互獨立.該芯片生產(chǎn)后成盒包裝,每盒100件,每一盒產(chǎn)品在交付用戶之前要對產(chǎn)品做檢驗,如檢驗出不合格品,則更換為合格品.現(xiàn)對一盒產(chǎn)品檢驗了10件,結果恰有一件不合格,已知每件產(chǎn)品的檢驗費用為元,若有不合格品進入用戶手中,則工廠要對每件不合格產(chǎn)品支付200元的賠償費用.若不對該盒余下的產(chǎn)品檢驗,這一盒產(chǎn)品的檢驗費用與賠償費用的和記為,以為決策依據(jù),判斷是否該對這盒余下的所有產(chǎn)品作檢驗?
(參考公式:,)
(參考數(shù)據(jù):;)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)的圖象與軸相切.
(1)求實數(shù)a的值;
(2)求的單調(diào)區(qū)間;
(3)當時,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】萊昂哈德·歐拉,瑞士數(shù)學家、自然科學家.歲時入讀巴塞爾大學,歲大學畢業(yè),歲獲得碩士學位,他是數(shù)學史上最多產(chǎn)的數(shù)學家.其中之一就是他發(fā)現(xiàn)并證明歐拉公式,從而建立了三角函數(shù)和指數(shù)函數(shù)的關系.若將其中的取作就得到了歐拉恒等式,它是數(shù)學里令人著迷的一個公式,它將數(shù)學里最重要的幾個量聯(lián)系起來:兩個超越數(shù):自然對數(shù)的底數(shù),圓周率;兩個單位:虛數(shù)單位和自然數(shù)單位;以及被稱為人類偉大發(fā)現(xiàn)之一的,數(shù)學家評價它是“上帝創(chuàng)造的公式”請你根據(jù)歐拉公式:,解決以下問題:
(1)試將復數(shù)寫成(、,是虛數(shù)單位)的形式;
(2)試求復數(shù)的模.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com