【題目】如圖,在中,平面平面,,.設(shè)分別為中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)試問(wèn)在線段上是否存在點(diǎn),使得過(guò)三點(diǎn)的平面內(nèi)的任一條直線都與平面平行?
若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)存在,點(diǎn)是線段中點(diǎn).
【解析】
試題分析:(1)通過(guò)證明證明;(2)通過(guò)和面內(nèi)的兩條相交直線垂直,證明;(3)通過(guò)證明兩個(gè)平面內(nèi)的兩條相交直線 分別平行,證明.
試題解析證明:因?yàn)辄c(diǎn)是中點(diǎn), 點(diǎn)為的中點(diǎn),
所以,
又因?yàn)?/span>,所以.………………3分
證明:因?yàn)槠矫?/span>平面,平面,
又,,所以平面.
所以.
又因?yàn)?/span>,且,
所以.………………7分
解:當(dāng)點(diǎn)是線段中點(diǎn)時(shí),過(guò)點(diǎn),,的平面內(nèi)的任一條直線都與平面平行.………………8分
取中點(diǎn),連,連.
由可知.
因?yàn)辄c(diǎn)是中點(diǎn),點(diǎn)為的中點(diǎn),
所以,
又因?yàn)?/span>,,
所以.………………10分
又因?yàn)?/span>,
所以,
所以.………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)設(shè)函數(shù)(其中為常數(shù)),若函數(shù)在區(qū)間上不存在極值,且存在滿足,求的取值范圍;
(3)已知,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的方程為:(,為常數(shù))
(Ⅰ)判斷曲線的形狀;
(Ⅱ)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,兩點(diǎn)的坐標(biāo)分別為,動(dòng)點(diǎn)滿足:直線與直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)作兩條互相垂直的射線,與(1)的軌跡分別交于兩點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin-2·sin2x.
(1) 求函數(shù)f(x)的最小正周期;
(2) 求函數(shù)f(x)圖象的對(duì)稱軸方程、對(duì)稱中心的坐標(biāo);
(3) 當(dāng)0≤x≤時(shí),求函數(shù)f(x)的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和的距離之和的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線,動(dòng)點(diǎn)到點(diǎn)的距離等于它到直線的距離.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)是否存在過(guò)的直線,使得直線被曲線截得的弦恰好被點(diǎn)所平分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線上的點(diǎn)到焦點(diǎn)的距離.
(Ⅰ)求拋物線的方程;
(Ⅱ)如圖,直線與拋物線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)是.求證:直線恒過(guò)一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓的方程式;
(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com