【題目】從某校的800名男生中隨機(jī)抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組,第一組[155,160),第二組[160,165),…,第八組[190.195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組人數(shù)為4.
(1)求第七組的頻數(shù).
(2)估計該校的800名男生身高的中位數(shù)在上述八組中的哪一組以及身高在180cm以上(含180cm)的人數(shù).
【答案】
(1)解:根據(jù)題意,第六組的頻率為 =0.08,
第七組的頻率為:1﹣(0.008×2+0.016+0.04×2+0.06)×5﹣0.08=0.06,
∴第七組的頻數(shù)為0.06×50=3
(2)解:由各組頻率可得以下數(shù)據(jù):
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
頻率 | 0.04 | 0.08 | 0.20 | 0.20 | 0.30 | 0.08 | 0.06 | 0.04 |
∵0.04+0.08+0.20=0.32<0.5,0.32+0.20=0.52>0.5,
所以中位數(shù)在第四組;
身高在180cm以上的頻率為0.08+0.06+0.04=0.18,
估計這所學(xué)校高三年級800名學(xué)生中身高在180cm以上(含180cm)的人數(shù)為
800×0.18=144.
【解析】(1)根據(jù)題意,求出第七組的頻率,再求對應(yīng)的頻數(shù);(2)中位數(shù)兩邊頻率相等,即可得出中位數(shù)在第四組;計算身高在180cm以上的頻率,求出800名學(xué)生中身高在180cm以上(含180cm)的人數(shù).
【考點精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[2.2]=2,[﹣3.5]=﹣4,設(shè)數(shù)列{an}的通項公式為an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在實數(shù)a,使得an=(n﹣2)2n+a(n∈N*),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣kx,x∈R(e是自然對數(shù)的底數(shù)).
(1)若k∈R,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,討論函數(shù)f(x)在(﹣∞,4]上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+2y+m=0與y軸交于A,B兩點,且∠ACB=90°(C為圓心),過點P(0,2)且斜率為k的直線與圓C相交于M,N兩點.
(1)求實數(shù)m的值;
(2)若|MN|≥4,求k的取值范圍;
(3)若向量 與向量 共線(O為坐標(biāo)原點),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1: (α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1和C2公共弦的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同的四個小球,它們的標(biāo)號分別為1、2、3、4,現(xiàn)從袋中不放回地隨機(jī)抽取兩個小球,記第一次取出的小球的標(biāo)號為a,第二次取出的小球的標(biāo)號為b,記事件A為“a+b≥6“.
(1)列舉出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在區(qū)間[0,2]內(nèi)任取兩個實數(shù)x,y,求事件“x2+y2≥12P(A)“的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為150分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計成績在120分以上(含120分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在[135,150]的學(xué)生中選兩位同學(xué),共同幫助成績在[60,75)中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
[60,75) | 2 | 0.04 |
[75,90) | 3 | 0.06 |
[90,105) | 14 | 0.28 |
[105,120) | 15 | 0.30 |
[120,135) | A | B |
[135,150] | 4 | 0.08 |
合計 | C | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),是常數(shù).
(Ⅰ)若,且曲線的切線經(jīng)過坐標(biāo)原點,求該切線的方程;
(Ⅱ)討論的零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com