【題目】在直角梯形ABCD中(如圖1),,,,,,點ECD上,且,將沿AE折起,使得平面平面ABCE(如圖2),GAE中點.

(Ⅰ)求四棱錐的體積;

(Ⅱ)在線段BD上是否存在點P,使得平面ADE?若存在,求的值;若不存在,請說明理由.

【答案】(Ⅰ)(Ⅱ)存在,

【解析】

(Ⅰ)根據(jù)平面與平面垂直的性質(zhì)定理得到平面ABCE再根據(jù)椎體的體積公式計算可得結(jié)果;

(Ⅱ)過點CAB于點F,過點FDB于點P,連接PC可證得平面平面ADE,再根據(jù)平面與平面平行的性質(zhì)可得平面ADE,最后根據(jù)平面幾何知識可求得比值.

(Ⅰ)證明:因為GAE中點,,所以

因為平面平面ABCE,平面平面

平面ADE,所以平面ABCE

在直角三角形ADE中,易求

,

所以四棱錐的體積

(Ⅱ)在BD上存在點P,使得平面ADE,

過點CAB于點F,過點FDB于點P,連接PC,

如圖所示:

因為平面ADE平面ADE,所以平面ADE

同理平面ADE,

又因為,所以平面平面ADE

因為平面CFP,所以平面ADE

所以在BD上存在點P,使得平面ADE

因為四邊形AECF為平行四邊形.

所以,即,

.

所以在BD上存在點P,使得平面ADE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,34.現(xiàn)每次有放回地從中任意取出一個小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機模擬的方法估計恰好在第3次停止摸球的概率,利用計算機軟件產(chǎn)生隨機數(shù),每1組中有3個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442

由此可以估計恰好在第3次停止摸球的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點、以軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,若直線與曲線交于、兩點.

1)求線段的中點的直角坐標(biāo);

2)設(shè)點是曲線上任意一點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c分別為內(nèi)角AB,C的對邊,若同時滿足以下四個條件中的三個:①,②,③,④.

1)條件①②能否同時滿足,請說明理由;

2)以上四個條件,請在滿足三角形有解的所有組合中任選一組,并求出對應(yīng)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)2020項的實數(shù)數(shù)列,中的每一項都不為零,中任意連續(xù)11的乘積是定值.

①存在滿足條件的數(shù)列,使得其中恰有3651;

②不存在滿足條件的數(shù)列,使得其中恰有5501.

命題的真假情況為(

A.①和②都是真命題B.①是真命題,②是假命題

C.②是真命題,①是假命題D.①和②都是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾志成城,抗擊疫情,一方有難,八方支援,在此次抗擊疫情過程中,各省市都派出援鄂醫(yī)療隊. 假設(shè)汕頭市選派名主任醫(yī)生,名護士,組成三個醫(yī)療小組分配到湖北甲、乙、丙三地進行醫(yī)療支援,每個小組包括名主任醫(yī)生和名護士,則不同的分配方案有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,左焦點到直線的距離為10,圓.

1)求橢圓的方程;

2)若是橢圓上任意一點,為圓的任一直徑,求的取值范圍;

3)是否存在以橢圓上點為圓心的圓,使得過圓上任意一點作圓的切線,切點為,都滿足?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),

(Ⅰ)求函數(shù)處的切線;

(Ⅱ)若函數(shù)處有最大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對于函數(shù)有下述四個結(jié)論:

①函數(shù)在其定義域上為增函數(shù);

②對于任意的,都有成立;

有且僅有兩個零點;

④若在點處的切線也是的切線,則必是零點.

其中所有正確的結(jié)論序號是(

A.①②③B.①②C.②③④D.②③

查看答案和解析>>

同步練習(xí)冊答案