【題目】已知直線平面,直線平面,給出下列命題:

;

;

其中正確命題的序號(hào)是

A.①②③ B.②③④ C.①③ D.②④

【答案】D

【解析】

試題分析:l平面αα∥β可以得到直線l平面β,又由直線m平面β,所以有lm;即為真命題;

因?yàn)橹本l平面αα⊥β可得直線l平行與平面β或在平面β內(nèi),又由直線m平面β,所以lm,可以平行,相交,異面;故為假命題;

因?yàn)橹本l平面αlm可得直線m平面α,又由直線m平面β可得α⊥β;即為真命題;

由直線l平面α以及lm可得直線m平行與平面α或在平面α內(nèi),又由直線m平面βαβ可以平行也可以相交,即為假命題.

所以真命題為①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以26金18銀26銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛好者在高三 年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如下表:

(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線 和圓

(Ⅰ)求直線斜率的取值范圍;

(Ⅱ)直線能否將圓分割成弧長(zhǎng)的比值為的兩段圓。繛槭裁?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市場(chǎng)上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.

1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?

2)若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從數(shù)列中抽出一項(xiàng),依原來的順序組成的新叫數(shù)列的一個(gè)子列.

(1)寫出數(shù)列的一個(gè)是等比數(shù)列的子列

(2)若是無窮等比數(shù)列,首項(xiàng),公比,則數(shù)列是否存在一個(gè)子列,為無窮等差數(shù)列?若存在,寫出該子列的通項(xiàng)公式;若不存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點(diǎn)C是弧AB的中點(diǎn),E是線段AC的中點(diǎn),D是線段PB的中點(diǎn),且PO=2,OB=1

(1)試在PB上確定一點(diǎn)F,使得EFCOD,并說明理由;

(2)求點(diǎn)到面COD的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程式是參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1求直線的普通方程與圓的直角坐標(biāo)方程;

2設(shè)圓與直線交于、兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(Ⅲ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請(qǐng)將(Ⅱ)的結(jié)果填入空白欄,并計(jì)算關(guān)于的回歸方程.

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,0為坐標(biāo)原點(diǎn).

(1)當(dāng)為何值時(shí),曲線表示圓;

(2)若曲線與直線交于兩點(diǎn),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案