【題目】如圖,正方體的棱長為,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中正確的是( )
A.
B.平面
C.與平面所成角是
D.面積與的面積相等
【答案】BC
【解析】
先連接,, 根據(jù)正方體結(jié)構(gòu)特征,以及線面角的概念,線面垂直的判定定理等,逐項(xiàng)判斷,即可得出結(jié)果.
連接,,
A選項(xiàng),因?yàn)?/span>線段上的動(dòng)點(diǎn),若與重合,則在正方體中,,此時(shí)與所成的角為,顯然與不垂直,故A錯(cuò);
B選項(xiàng),因?yàn)檎襟w底面為正方形,對角線互相垂直,所以;又正方體側(cè)棱與底面垂直,所以平面,所以,由線面垂直的判定定理,可得平面,又平面即為平面,所以平面;故B正確;
C選項(xiàng),由B選項(xiàng)可得,與平面所成角即為與平面所成角,即,
所以在正方形中,;故C正確;
D選項(xiàng),因?yàn)辄c(diǎn)平面,點(diǎn)平面,由正方體結(jié)構(gòu)特征易得,點(diǎn)到直線的距離大于正方體的側(cè)棱長,而點(diǎn)到直線的距離等于側(cè)棱長,因此面積與的面積不相等;故D錯(cuò)誤;
故選:BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于
D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)
滿足,動(dòng)點(diǎn)的軌跡為.
(1)求的方程;
(2)過點(diǎn)作動(dòng)直線的平行線交軌跡于兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人認(rèn)為在機(jī)動(dòng)車駕駛技術(shù)上,男性優(yōu)于女性.這是真的么?某社會(huì)調(diào)查機(jī)構(gòu)與交警合作隨機(jī)統(tǒng)計(jì)了經(jīng)常開車的名駕駛員最近三個(gè)月內(nèi)是否有交通事故或交通違法事件發(fā)生,得到下面的列聯(lián)表:
男 | 女 | 合計(jì) | |
無 | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
合計(jì) | 55 | 45 | 100 |
附:.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
據(jù)此表,可得
A. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足
B. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過
C. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足
D. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的焦點(diǎn)F在y軸上,其準(zhǔn)線與雙曲線的下準(zhǔn)線重合.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)A(,)(>0)是拋物線上一點(diǎn),且AF=,B是拋物線的準(zhǔn)線與y軸的交點(diǎn).過點(diǎn)A作拋物線的切線l,過點(diǎn)B作l的平行線l′,直線l′與拋物線交于點(diǎn)M,N,求△AMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,平面,, 是線段的中垂線, ,為線段上的點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)若為的中點(diǎn),求異面直線與所成角的正切值;
(Ⅲ)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的方程為,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動(dòng)點(diǎn)的直線交軸的負(fù)半軸于點(diǎn),交C于點(diǎn)(在第一象限),且是線段的中點(diǎn),過點(diǎn)作x軸的垂線交C于另一點(diǎn),延長線交C于點(diǎn).
(i)設(shè)直線,的斜率分別為,,證明:;
(ii)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市食品藥品監(jiān)督管理局開展2019年春季校園餐飲安全檢查,對本市的8所中學(xué)食堂進(jìn)行了原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評分,其評分情況如下表所示:
中學(xué)編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購加工標(biāo)準(zhǔn)評分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
衛(wèi)生標(biāo)準(zhǔn)評分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個(gè)被檢查的中學(xué)食堂中任意抽取兩個(gè)組成一組,若兩個(gè)中學(xué)食堂的原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評分均超過80分,則組成“對比標(biāo)兵食堂”,求該組被評為“對比標(biāo)兵食堂”的概率.
參考公式:,;
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com