【題目】已知橢圓方程,其左焦點、上頂點和左頂點分別為, , ,坐標原點為,且線段, , 的長度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過點的一條直線交橢圓于點, ,交軸于點,使得線段被點, 三等分,求直線的斜率.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析: (Ⅰ)由線段, , 的長度成等差數(shù)列,以及,可求得離心率; (Ⅱ)設直線的方程為,先研究的情況,根據(jù),求出將直線的方程和橢圓方程聯(lián)立求出點的橫坐標,根據(jù)對稱性可知直線的斜率.

試題解析:(Ⅰ)依題意有

把上式移項平方并把,代入得,

所以橢圓的離心率

(Ⅱ)設直線的方程為,先研究的情況,要使

,

因此

將直線的方程和橢圓方程聯(lián)立可得解得

由于點的橫坐標為,因此也等于,

由對稱性可知直線的斜率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,焦點為,點在拋物線上,且的距離比到直線的距離小1.

(1)求拋物線的方程;

(2)若點為直線上的任意一點,過點作拋物線的切線,切點分別為,求證:直線恒過某一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 軸上的動點 分別切圓 兩點.

(1) ,求切線 的方程;

(2),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(14分)關于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)報道,巴基斯坦由中方投資運營的瓜達爾港目前已通航.這是一個可以?810萬噸油輪的深水港,通過這一港口,中國船只能夠更快到達中東和波斯灣地區(qū),這相當于給中國平添了一條大動脈!在打造中巴經(jīng)濟走廊協(xié)議(簡稱協(xié)議)中,能源投資約340億美元,公路投資約59億美元,鐵路投資約38億美元,高架鐵路投資約16億美元,瓜達爾港投資約6.6億美元,光纖通訊投資約為0.4億美元.

有消息稱,瓜達爾港的月貨物吞吐量將是目前天津、上海兩港口月貨物吞吐量之和.表格記錄了2015年天津、上海兩港口的月吞吐量(單位:百萬噸):

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

天津

24

22

26

23

24

26

27

25

28

24

25

26

上海

32

27

33

31

30

31

32

33

30

32

30

30

(Ⅰ)根據(jù)協(xié)議提供信息,用數(shù)據(jù)說明本次協(xié)議投資重點;

(Ⅱ)從表中12個月任選一個月,求該月天津、上海兩港口月吞吐量之和超過55百萬噸的概率;

(Ⅲ)將(Ⅱ)中的計算結果視為瓜達爾港每個月貨物吞吐量超過55百萬噸的概率,設為瓜達爾未來12個月的月貨物吞吐量超過55百萬噸的個數(shù),寫出的數(shù)學期望(不需要計算過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù). 

(Ⅰ)若在定義域與內單調遞增,求實數(shù)的值;

(Ⅱ)若的極小值大于0,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知拋物線,過焦點的動直線交拋物線于兩點,拋物線在兩點處的切線相交于點.)求的值;()求點的縱坐標;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, ,數(shù)列滿足.

(1)求證:數(shù)列是等差數(shù)列,寫出的通項公式;

(2)求數(shù)列的通項公式及數(shù)列中的最大項與最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點,P為橢圓C上不同于A、B的動點,直線x=4與直線PA、PB分別交于M、N兩點;若D(7,0),則過D、M、N三點的圓必過x軸上不同于點D的定點,其坐標為________

查看答案和解析>>

同步練習冊答案