(2012•鹽城一模)[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).A.(選修4-1:幾何證明選講)
如圖,⊙O的半徑OB垂直于直徑AC,D為AO上一點,BD的延長線交⊙O于點E,過E點的圓的切線交CA的延長線于P.
求證:PD2=PA•PC.
分析:先證明PD=PE,再根據(jù)PE切⊙O于點E,利用切割線定理可得PE2=PA•PC,從而問題得證.
解答:證明:連接OE,因為PE切⊙O于點E,所以∠OEP=90°,
所以∠OEB+∠BEP=90°,
因為OB=OE,所以∠OBE=∠OEB,
因為OB⊥AC于點O,所以∠OBE+∠BDO=90°…(5分)
故∠BEP=∠BDO=∠PDE,PD=PE,
又因為PE切⊙O于點E,所以PE2=PA•PC,
故PD2=PA•PC…(10分)
點評:圓的切線性質(zhì)是圓的切線垂直于經(jīng)過切點的半徑,遇到切線方程,連接半徑是我們常用的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)如圖,在四棱錐P-ABCD中,四邊形ABCD是菱形,PA=PC,E為PB的中點.
(1)求證:PD∥面AEC;
(2)求證:平面AEC⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)函數(shù)f(x)=(x2+x+1)ex(x∈R)的單調(diào)減區(qū)間為
(-2,-1)(或閉區(qū)間)
(-2,-1)(或閉區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)若關(guān)于x的方程kx+1=lnx有解,則實數(shù)k的取值范圍是
(-∞,
1
e2
]
(-∞,
1
e2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)已知x、y、z均為正數(shù),求證:
3
3
(
1
x
+
1
y
+
1
z
)≤
1
x2
+
1
y2
+
1
z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)在極坐標系中,圓C的方程為ρ=4
2
cos(θ-
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t+1
y=t-1
(t為參數(shù)),求直線l被⊙C截得的弦AB的長度.

查看答案和解析>>

同步練習(xí)冊答案